Some properties of generalized reduced verma modules over ℤ-graded modular Lie superalgebras



We study some properties of generalized reduced Verma modules over ℤ-graded modular Lie superalgebras. Some properties of the generalized reduced Verma modules and coinduced modules are obtained. Moreover, invariant forms on the generalized reduced Verma modules are considered. In particular, for ℤ-graded modular Lie superalgebras of Cartan type we prove that generalized reduced Verma modules are isomorphic to mixed products of modules.


modular Lie superalgebra generalized reduced Verma module coinduced module invariant form mixed product 

MSC 2010

17B50 17B10 17B05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    I. N. Bernshtein, I. M. Gel’fand, S. I. Gel’fand: Structre of representations generated by vectors of highest weight. Funct. Anal. Appl. 5 (1971), 1–8. (In English. Russian original.); translation from Funkts. Anal. Prilozh. 5 (1971), 1–9.CrossRefMATHGoogle Scholar
  2. [2]
    I. N. Bernshtein, I. M. Gel’fand, S. I. Gel’fand: Differential operators on the base affine space and a study of g-modules. Lie Groups and Their Representations. Proc. Summer Sch. Bolyai Janos Math. Soc., Budapest, 1971; Halsted, New York, 1975, pp. 21–64.Google Scholar
  3. [3]
    Y. Cheng, Y. Su: Generalized Verma modules over some Block algebras. Front. Math. China 3 (2008), 37–47. MR doiMathSciNetCrossRefGoogle Scholar
  4. [4]
    S. Chiu: The invariant forms on the graded modules of the graded Cartan type Lie algebras. Chin. Ann. Math., Ser. B 13 (1992), 16–24.MathSciNetMATHGoogle Scholar
  5. [5]
    A. J. Coleman, V. M. Futorny: Stratified L-modules. J. Algebra 163 (1994), 219–234.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    J. Dixmier: Algèbres Enveloppantes. Gauthier-Villars, Paris, 1974. (In French.)MATHGoogle Scholar
  7. [7]
    R. Farnsteiner: Extension functors of modular Lie algebras. Math. Ann. 288 (1990), 713–730.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    R. Farnsteiner, H. Strade: Shapiro’s lemma and its consequences in the cohomology theory of modular Lie algebras. Math. Z. 206 (1991), 153–168.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    V. Futorny, V. Mazorchuk: Structure of g-stratified modules for finite-dimensional Lie algebras. I. J. Algebra 183 (1996), 456–482.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    V. G. Kac: Lie superalgebras. Adv. Math. 26 (1977), 8–96.CrossRefMATHGoogle Scholar
  11. [11]
    A. Khomenko, V. Mazorchuk: On the determinant of Shapovalov form for generalized Verma modules. J. Algebra 215 (1999), 318–329.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    O. Khomenko, V. Mazorchuk: Generalized Verma modules induced from sl(2, C) and associated Verma modules. J. Algebra 242 (2001), 561–576.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    V. Mazorchuk: On the structure of an α-stratified generalized Verma module over Lie algebra sl(n, C). Manuscr. Math. 88 (1995), 59–72.MathSciNetMATHGoogle Scholar
  14. [14]
    V. S. Mazorchuk, S. A. Ovsienko: Submodule structure of generalized Verma modules induced from generic Gelfand-Zetlin modules. Algebr. Represent. Theory 1 (1998), 3–26.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    L. E. Ross: Representations of graded Lie algebras. Trans. Am. Math. Soc. 120 (1965), 17–23.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    M. Scheunert: The Theory of Lie Superalgebras. An Introduction. Lecture Notes in Mathematics 716, Springer, Berlin, 1979.Google Scholar
  17. [17]
    G. Shen: Graded modules of graded Lie algebras of Cartan type. I: Mixed products of modules. Sci. Sin., Ser. A 29 (1986), 570–581.MATHGoogle Scholar
  18. [18]
    G. Shen: Graded modules of graded Lie algebras of Cartan type. II: Positive and negative graded modules. Sci. Sin., Ser. A 29 (1986), 1009–1019.MATHGoogle Scholar
  19. [19]
    G. Shen: Graded modules of graded Lie algebras of Cartan type. III: Irreducible modules. Chin. Ann. Math., Ser. B 9 (1988), 404–417.MATHGoogle Scholar
  20. [20]
    D.-N. Verma: Structure of certain induced representations of complex semisimple Lie algebras. Bull. Am. Math. Soc. 74 (1968), 160–166; errata ibid. 74 (1968), 628.MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    Y. Wang, Y. Zhang: Derivation algebra Der(H) and central extensions of Lie superalgebras. Commun. Algebra 32 (2004), 4117–4131.MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    Y. Zhang: Graded modules of the Cartan-type Z-graded Lie superalgebras W(n) and S(n). Kexue Tongbao 40 (1995), 1829–1832. (In Chinese.)MathSciNetGoogle Scholar
  23. [23]
    Y. Zhang: Z-graded module of Lie superalgebra H(n) of Cartan type. Chin. Sci. Bull. 41 (1996), 813–817.MathSciNetMATHGoogle Scholar
  24. [24]
    Y. Zhang: Finite-dimensional Lie superalgebras of Cartan type over fields of prime characteristic. Chin. Sci. Bull. 42 (1997), 720–724.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    Y. Zhang: Mixed products of modules of infinite-dimensional Lie superalgebras of Cartan type. Chin. Ann. Math., Ser. A 18 (1997), 725–732.MathSciNetMATHGoogle Scholar
  26. [26]
    Y. Zhang, H. Fu: Finite-dimensional Hamiltonian Lie superalgebra. Commun. Algebra 30 (2002), 2651–2673.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2017

Authors and Affiliations

  1. 1.Department of MathematicsNortheast Forestry UniversityXiangfang, Harbin, HeilongjiangP.R. China
  2. 2.School of Mathematics and StatisticsNortheast Normal University, Nanguan QuChangchun, Jilin ShengP.R. China

Personalised recommendations