Skip to main content
Log in

Identification of source term in a nonlinear degenerate parabolic equation with memory

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

In this work, we consider an inverse backward problem for a nonlinear parabolic equation of the Burgers’ type with a memory term from final data. To this aim, we first establish the well-posedness of the direct problem. On the basis of the optimal control framework, the existence and necessary condition of the minimizer for the cost functional are established. The global uniqueness and stability of the minimizer are deduced from the necessary condition. Numerical experiments demonstrate the effectiveness of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. B. Allal, G. Fragnelli: Null controllability of degenerate parabolic equation with memory. Math. Methods Appl. Sci. 44 (2021), 9163–9190.

    Article  MathSciNet  Google Scholar 

  2. Y. Y. Belov, K. V. Korshun: An identification problem of source function in the Burgers-type equation. J. Sib. Fed. Univ., Math. Phys. 5 (2012), 497–506. (In Russian.)

    Google Scholar 

  3. J. Biazar, H. Ghazvini: Convergence of the homotopy perturbation method for partial differential equations. Nonlinear Anal., Real World Appl. 10 (2009), 2633–2640.

    Article  MathSciNet  Google Scholar 

  4. M. A. Biot: Mechanics of Incremental Deformations. John Wiley & Sons, New York, 1965.

    Book  Google Scholar 

  5. D. Biskamp: Collisionless shock waves in plasmas. Nuclear Fusion 13 (1973), Article ID 719.

  6. J. M. Burgers: A mathematical model illustrating the theory of turbulence. Advances in Applied Mechanics. Vol. 1. Academic Press, New York, 1948, pp. 171–199.

    Google Scholar 

  7. B. Campanella, S. Legnaioli, S. Pagnotta, F. Poggialini, V. Palleschi: Shock waves in laser-induced plasmas. Atoms 7 (2019), Article ID 57, 14 pages.

  8. F. L. Carneiro, S. C. Ulhoa, J. W. Maluf, J. F. da Rocha-Neto: Non-linear plane gravitational waves as space-time defects. Eur. Phys. J. C 81 (2021), Article ID 67, 9 pages.

  9. I. Dağ, D. Irk, B. Saka: A numerical solution of the Burgers’ equation using cubic B-splines. Appl. Math. Comput. 163 (2005), 199–211.

    MathSciNet  Google Scholar 

  10. J.-P. Dussault: La différentiation automatique et son utilisation en optimisation. RAIRO, Oper. Res. 42 (2008), 141–155. (In French.)

    Article  MathSciNet  Google Scholar 

  11. M. Grasselli, A. Lorenzi: Abstract nonlinear Volterra integrodifferential equations with nonsmooth kernels. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 2 (1991), 43–53.

    MathSciNet  Google Scholar 

  12. M. Inc: The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method. J. Math. Anal. Appl. 345 (2008), 476–484.

    Article  MathSciNet  Google Scholar 

  13. A. Jeffrey, T. Taniuti: Non-Linear Wave Propagation with Applications to Physics and Magnetohydrodynamics. Mathematics in Science and Engineering 9. Academic Press, New York, 1964.

    Google Scholar 

  14. R. Jiwari: A Haar wavelet quasilinearization approach for numerical simulation of Burgers’ equation. Comput. Phys. Commun. 183 (2012), 2413–2423.

    Article  MathSciNet  Google Scholar 

  15. R. Jiwari: A hybrid numerical scheme for the numerical solution of the Burgers’ equation. Comput. Phys. Commun. 188 (2015), 59–67.

    Article  MathSciNet  Google Scholar 

  16. N. N. Leonenko, W. A. Woyczynski: Parameter identification for singular random fields arising in Burgers’ turbulence. J. Stat. Plann. Inference 80 (1999), 1–13.

    Article  MathSciNet  Google Scholar 

  17. N. N. Leonenko, W. A. Woyczynski: Parameter identification for stochastic Burgers’ flows via parabolic rescaling. Probab. Math. Stat. 21 (2001), 1–55.

    MathSciNet  Google Scholar 

  18. J. L. Lions, E. Magenes: Non-Homogeneous Boundary Value Problems and Applications. Vol. 1. Die Grundlehren der mathematischen Wissenschaften 181. Springer, Berlin, 1972.

    Book  Google Scholar 

  19. S. I. Popel, M. Y. Yu, V. N. Tsytovich: Shock waves in plasmas containing variable-charge impurities. Phys. Plasmas 3 (1996), 4313–4315.

    Article  Google Scholar 

  20. J. Simon: Compact sets in the space Lp(0,T; B). Ann. Mat. Pura Appl., IV. Ser. 146 (1986), 65–96.

    Article  Google Scholar 

  21. Z. Wang, J.-M. Vanden-Broeck, P. A. Milewski: Two-dimensional flexural-gravity waves of finite amplitude in deep water. IMA J. Appl. Math. 78 (2013), 750–761.

    Article  MathSciNet  Google Scholar 

  22. V. E. Zakharov, S. L. Musher, A. M. Rubenchik: Hamiltonian approach to the description of non-linear plasma phenomena. Phys. Reports 129 (1985), 285–366.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soufiane Abid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abid, S., Atifi, K., Essoufi, EH. et al. Identification of source term in a nonlinear degenerate parabolic equation with memory. Appl Math 69, 209–232 (2024). https://doi.org/10.21136/AM.2024.0049-23

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2024.0049-23

Keywords

MSC 2020

Navigation