Skip to main content
Log in

Homogenization of monotone parabolic problems with an arbitrary number of spatial and temporal scales

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We prove a general homogenization result for monotone parabolic problems with an arbitrary number of microscopic scales in space as well as in time, where the scale functions are not necessarily powers of the scale parameter ε. The main tools for the homogenization procedure are multiscale convergence and very weak multiscale convergence, both adapted to evolution problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Allaire: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992), 1482–1518.

    Article  MathSciNet  Google Scholar 

  2. G. Allaire, M. Briane: Multiscale convergence and reiterated homogenisation. Proc. R. Soc. Edinb., Sect. A 126 (1996), 297–342.

    Article  MathSciNet  Google Scholar 

  3. M. Amar, D. Andreucci, D. Bellaveglia: The time-periodic unfolding operator and applications to parabolic homogenization. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 28 (2017), 663–700.

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Amar, D. Andreucci, R. Gianni, C. Timofte: Homogenization results for a class of parabolic equations with a non-local interface condition via time-periodic unfolding. NoDEA, Nonlinear Differ. Equ. Appl. 26 (2019), Article ID 52, 28 pages.

  5. A. Bensoussan, J.-L. Lions, G. Papanicoloau: Asymptotic Analysis for Periodic Structures. Studies in Mathematics and Its Applications 5. North-Holland Publishing, Amsterdam, 1978.

    Google Scholar 

  6. D. Cioranescu, P. Donato: An Introduction to Homogenization. Oxford Lecture Series in Mathematics and Its Applications 17. Oxford University Press, New York, 1999.

    Book  Google Scholar 

  7. T. Danielsson, P. Johnsen: Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales. Math. Bohem. 146 (2021), 483–511.

    Article  MathSciNet  Google Scholar 

  8. L. C. Evans: The perturbed test function method for viscosity solutions of nonlinear PDE. Proc. R. Soc. Edinb., ASect. A 111 (1989), 359–375.

    Article  MathSciNet  Google Scholar 

  9. L. C. Evans: Periodic homogenisation of certain fully nonlinear partial differential equations. Proc. R. Soc. Edinb., Sect. A 120 (1992), 245–265.

    Article  MathSciNet  Google Scholar 

  10. L. Flodén, A. Holmbom, M. Olsson, J. Persson: Very weak multiscale convergence. Appl. Math. Lett. 23 (2010), 1170–1173.

    Article  MathSciNet  Google Scholar 

  11. L. Flodén, A. Holmbom, M. Olsson Lindberg, J. Persson: Two-scale convergence: Some remarks and extensions. Pure Appl. Math. Q. 9 (2013), 461–486.

    Article  MathSciNet  Google Scholar 

  12. L. Flodén, A. Holmbom, M. Olsson Lindberg, J. Persson: Homogenization of parabolic equations with an arbitrary number of scales in both space and time. J. Appl. Math. 2014 (2014), Article ID 101685, 16 pages.

  13. L. Flodén, M. Olsson: Reiterated homogenization of some linear and nonlinear monotone parabolic operators. Can. Appl. Math. Q. 14 (2006), 149–183.

    MathSciNet  Google Scholar 

  14. L. Flodén, M. Olsson: Homogenization of some parabolic operators with several time scales. Appl. Math., Praha 52 (2007), 431–446.

    Article  MathSciNet  Google Scholar 

  15. A. Holmbom: Homogenization of parabolic equations: An alternative approach and some corrector-type results. Appl. Math., Praha 42 (1997), 321–343.

    Article  MathSciNet  Google Scholar 

  16. A. Kufner, O. John, S. Fučík: Function Spaces. Monographs and Textbooks on Mechanics of Solids and Fluids. Mechanics: Analysis 3. Noordhoff, Leyden, 1977.

    Google Scholar 

  17. D. Lukkassen, G. Nguetseng, P. Wall: Two-scale convergence. Int. J. Pure Appl. Math. 2 (2002), 35–86.

    MathSciNet  Google Scholar 

  18. G. Nguetseng: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989), 608–623.

    Article  MathSciNet  Google Scholar 

  19. G. Nguetseng, J. L. Woukeng: Deterministic homogenization of parabolic monotone operators with time dependent coefficients. Electron. J. Differ. Equ. 2004 (2004), Article ID 82, 23 pages.

  20. G. Nguetseng, J. L. Woukeng: Σ-convergence of nonlinear parabolic operators. Nonlinear Anal., Theory Methods Appl., Ser. A 66 (2007), 968–1004.

    Article  MathSciNet  Google Scholar 

  21. J. Persson: Homogenization of monotone parabolic problems with several temporal scales. Appl. Math., Praha 57 (2012), 191–214.

    Article  MathSciNet  Google Scholar 

  22. J. Persson: Selected Topics in Homogenization: Doctoral Thesis. Mid Sweden University, Østersund, 2012.

    Google Scholar 

  23. N. Svanstedt: G-convergence of parabolic operators. Nonlinear Anal., Theory Methods Appl. 36 (1999), 807–843.

    Article  MathSciNet  Google Scholar 

  24. N. Svanstedt, N. Wellander, J. Wyller: A numerical algorithm for nonlinear parabolic equations with highly oscillating coefficients. Numer. Methods Partial Differ. Equations 12 (1996), 423–440.

    Article  MathSciNet  Google Scholar 

  25. N. Svanstedt, J. L. Woukeng: Periodic homogenization of strongly nonlinear reaction-diffusion equations with large reaction terms. Appl. Anal. 92 (2013), 1357–1378.

    Article  MathSciNet  Google Scholar 

  26. J. L. Woukeng: Periodic homogenization of nonlinear non-monotone parabolic operators with three time scales. Ann. Mat. Pura Appl. (4) 189 (2010), 357–379.

    Article  MathSciNet  Google Scholar 

  27. J. L. Woukeng: Σ-convergence and reiterated homogenization of nonlinear parabolic operators. Commun. Pure Appl. Anal. 9 (2010), 1753–1789.

    Article  MathSciNet  Google Scholar 

  28. E. Zeidler: Nonlinear Functional Analysis and Its Applications. II/B. Nonlinear Monotone Operators. Springer, New York, 1990.

    Google Scholar 

  29. V. V. Zhikov: On an extension of the method of two-scale convergence and its applications. Sb. Math. 191 (2000), 973–1014.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

We would like to thank the anonymous referee for valuable comments that have improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liselott Flodén.

Additional information

In memory of Anders Holmbom (1958–2022)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danielsson, T., Flodén, L., Johnsen, P. et al. Homogenization of monotone parabolic problems with an arbitrary number of spatial and temporal scales. Appl Math 69, 1–24 (2024). https://doi.org/10.21136/AM.2023.0269-22

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2023.0269-22

Keywords

MSC 2020

Navigation