Skip to main content
Log in

Inverse rate-dependent Prandtl-Ishlinskii operators and applications

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

In the past years, we observed an increased interest in rate-dependent hysteresis models to characterize complex time-dependent nonlinearities in smart actuators. A natural way to include rate-dependence to the Prandtl-Ishlinskii model is to consider it as a linear combination of play operators whose thresholds are functions of time. In this work, we propose the extension of the class of rate-dependent Prandtl-Ishlinskii operators to the case of a whole continuum of play operators with time-dependent thresholds. We prove the existence of an analytical inversion formula, and illustrate its applicability in the study of error bounds for inverse compensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Al Janaideh, P. Krejčí: An inversion formula for a Prandtl-Ishlinskii operator with time dependent thresholds. Phys. B 406 (2011), 1528–1532.

    Article  Google Scholar 

  2. M. Al Janaideh, M. Rakotondrabe: Precision motion control of a piezoelectric cantilever positioning system with rate-dependent hysteresis nonlinearities. Nonlinear Dyn. 104 (2021), 3385–3405.

    Article  Google Scholar 

  3. M. Al Janaideh, R. Xu, X. Tan: Adaptive estimation of play radii for a Prandtl-Ishlinskii hysteresis operator. IEEE Trans. Control Syst. Technol. 29 (2021), 2687–2695.

    Article  Google Scholar 

  4. D. Davino, A. Giustiniani, C. Visone: Magnetoelastic energy harvesting: Modeling and experiments. Smart Actuation and Sensing Systems: Recent Advances and Future Challenges. IntechOpen, London, 2012, pp. 487–512.

    Google Scholar 

  5. R. V. Iyer, X. Tan, P. S. Krishnaprasad: Approximate inversion of the Preisach hysteresis operator with application to control of smart actuators. IEEE Trans. Autom. Control 50 (2005), 798–810.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. J. Khasawneh, Z. S. Abo-Hammour, M. I. Al Saaideh, S. M. Momani: Identification of hysteresis models using real-coded genetic algorithms. Eur. Phys. J. Plus 134 (2019), Article ID 507, 17 pages.

  7. P. Krejčí: Hysteresis, Convexity and Dissipation in Hyperbolic Equations. GAKUTO International Series. Mathematical Sciences and Applications 8. Gakkotosho, Tokyo, 1996.

    MATH  Google Scholar 

  8. P. Krejčí: The Kurzweil integral and hysteresis. J. Phys., Conf. Ser. 55 (2006), 144–154.

    Article  Google Scholar 

  9. P. Krejčí, M. Al Janaideh, F. Deasy: Inversion of hysteresis and creep operators. Phys. B 407 (2012), 1354–1356.

    Article  Google Scholar 

  10. P. Krejčí, K. Kuhnen: Inverse control of systems with hysteresis and creep. IEE Proc., Control Theory Appl. 148 (2001), 185–192.

    Article  Google Scholar 

  11. P. Krejčí, H. Lamba, S. Melnik, D. Rachinskii: Kurzweil integral representation of interacting Prandtl-Ishlinskii operators. Discrete Contin. Dyn. Syst., Ser. B 20 (2015), 2949–2965.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Krejčí, G. A. Monteiro: Inverse parameter-dependent Preisach operator in thermo-piezoelectricity modeling. Discrete Contin. Dyn. Syst., Ser. B 24 (2019), 3051–3066.

    MathSciNet  MATH  Google Scholar 

  13. P. Krejčí, G. A. Monteiro: Oscillations of a temperature-dependent piezoelectric rod. Nonlinear Anal., Real World Appl. 46 (2019), 403–420.

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Kuhnen, P. Krejčí: Compensation of complex hysteresis and creep effects in piezo-electrically actuated systems: A new Preisach modeling approach. IEEE Trans. Autom. Control 54 (2009), 537–550.

    Article  MATH  Google Scholar 

  15. K. K. Leang, S. Devasia: Design of hysteresis-compensating iterative learning control for piezo-positioners: Application to atomic force microscopes. Mechatron. 16 (2006), 141–158.

    Article  Google Scholar 

  16. X. Tan, J. S. Baras: Modeling and control of hysteresis in magnetostrictive actuators. Automatica 40 (2004), 1469–1480.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Visone: Hysteresis modelling and compensation for smart sensors and actuators. J. Phys., Conf. Ser. 138 (2008), Article ID 012028, 24 pages.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giselle Antunes Monteiro.

Additional information

The research was supported by GAČR Grant No. 20-14736S, RVO: 67985840 and by the European Regional Development Fund, Project No. CZ.02.1.01/0.0/0.0/16_019/0000778.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Janaideh, M., Krejčí, P. & Monteiro, G.A. Inverse rate-dependent Prandtl-Ishlinskii operators and applications. Appl Math 68, 713–726 (2023). https://doi.org/10.21136/AM.2023.0231-22

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2023.0231-22

Keywords

MSC 2020

Navigation