Skip to main content
Log in

On the stability analysis of Darboux problem on both bounded and unbounded domains

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we first investigate the existence and uniqueness of solution for the Darboux problem with modified argument on both bounded and unbounded domains. Then, we derive different types of the Ulam stability for the proposed problem on these domains. Finally, we present some illustrative examples to support our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. D. Bainov, P. Simeonov: Integral Inequalities and Applications. Mathematics and Its Applications. East European Series 57. Kluwer Academic Publishers, Dordrecht, 1992.

    Google Scholar 

  2. J. Brzdęk, D. Popa, I. Raşa: Hyers-Ulam stability with respect to gauges. J. Math. Anal. Appl. 453 (2017), 620–628.

    Article  MathSciNet  Google Scholar 

  3. J. Brzdęk, D. Popa, T. M. Rassias (eds.): Ulam Type Stability. Springer, Cham, 2019.

    Google Scholar 

  4. C. Çelik, F. Develi: Existence and Hyers-Ulam stability of solutions for a delayed hyperbolic partial differential equation. Period. Math. Hung. 84 (2022), 211–220.

    Article  MathSciNet  Google Scholar 

  5. G. Dezső: The Darboux-Ionescu problem for a third order system of hyperbolic equations. Libertas Math. 21 (2001), 27–33.

    MathSciNet  Google Scholar 

  6. J. Huang, Y. Li: Hyers-Ulam stability of delay differential equations of first order. Math. Nachr. 289 (2016), 60–66.

    Article  MathSciNet  Google Scholar 

  7. D. V. Jonesco: Sur une classe d’équations fonctionnelles. Annales Toulouse (3) 19 (1927), 39–92. (In French.)

    Article  MathSciNet  Google Scholar 

  8. S.-M. Jung: Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 17 (2004), 1135–1140.

    Article  MathSciNet  Google Scholar 

  9. S.-M. Jung: A fixed point approach to the stability of a Volterra integral equation. Fixed Point Theory Appl. 2007 (2007), Article ID 57064, 9 pages.

  10. S.-M. Jung: Hyers-Ulam stability of linear partial differential equations of first order. Appl. Math. Lett. 22 (2009), 70–74.

    Article  MathSciNet  Google Scholar 

  11. S.-M. Jung: Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis. Springer Optimization and Its Applications 48. Springer, New York, 2011.

    Book  Google Scholar 

  12. M. Kwapisz, J. Turo: On the existence and uniqueness of solutions of Darboux problem for partial differential-functional equations. Colloq. Math. 29 (1974), 279–302.

    Article  MathSciNet  Google Scholar 

  13. V. Lakshmikantham, S. Leela, A. A. Martynyuk: Stability Analysis of Nonlinear Systems. Pure and Applied Mathematics 125. Marcel Dekker, New York, 1989.

    Google Scholar 

  14. N. Lungu, D. Popa: Hyers-Ulam stability of a first order partial differential equation. J. Math. Anal. Appl. 385 (2012), 86–91.

    Article  MathSciNet  Google Scholar 

  15. N. Lungu, D. Popa: Hyers-Ulam stability of some partial differential equation. Carpatian J. Math. 30 (2014), 327–334.

    Article  MathSciNet  Google Scholar 

  16. N. Lungu, I. A. Rus: Ulam stability of nonlinear hyperbolic partial differential equations. Carpatian J. Math. 24 (2008), 403–408.

    Google Scholar 

  17. D. Marian, S. A. Ciplea, N. Lungu: Ulam-Hyers stability of Darboux-Ionescu problem. Carpatian J. Math. 37 (2021), 211–216.

    Article  MathSciNet  Google Scholar 

  18. D. Otrocol, V. llea: Ulam stability for a delay differential equation. Cent. Eur. J. Math. 11 (2013), 1296–1303.

    MathSciNet  Google Scholar 

  19. D. Popa, I. Rasa: On the Hyers-Ulam stability of the linear differential equation. J. Math. Anal. Appl. 381 (2011), 530–537.

    Article  MathSciNet  Google Scholar 

  20. D. Popa, I. Rasa: Hyers-Ulam stability of the linear differential operator with noncon-stant coefficients. Appl. Math. Comput. 219 (2012), 1562–1568.

    MathSciNet  Google Scholar 

  21. I. A. Rus: On a problem of Darboux-Ionescu. Stud. Univ. Babes-Bolyai Math. 26 (1981), 43–45.

    MathSciNet  Google Scholar 

  22. I. A. Rus: Picard operators and applications. Sci. Math. Jpn. 58 (2003), 191–219.

    MathSciNet  Google Scholar 

  23. I. A. Rus: Fixed points, upper and lower fixed points: Abstract Gronwall lemmas. Carpathian J. Math. 20 (2004), 125–134.

    MathSciNet  Google Scholar 

  24. I. A. Rus: Ulam stability of ordinary differential equations. Stud. Univ. Babes-Bolyai Math. 54 (2009), 125–133.

    MathSciNet  Google Scholar 

  25. G. Teodoru: The data dependence for the solutions of Darboux-Ionescu problem for a hyperbolic inclusion of third order. Fixed Point Theory 7 (2006), 127–146.

    MathSciNet  Google Scholar 

  26. A. Zada, W. Ali, C. Park: Ulam’s type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall-Bellman-Bihari’s type. Appl. Math. Comput. 350 (2019), 60–65.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faruk Develi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çelik, C., Develi, F. On the stability analysis of Darboux problem on both bounded and unbounded domains. Appl Math 69, 139–150 (2024). https://doi.org/10.21136/AM.2023.0200-22

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2023.0200-22

Keywords

MSC 2020

Navigation