Skip to main content
Log in

Solution of 3D contact shape optimization problems with Coulomb friction based on TFETI

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

The present paper deals with the numerical solution of 3D shape optimization problems in frictional contact mechanics. Mathematical modelling of the Coulomb friction problem leads to an implicit variational inequality which can be written as a fixed point problem. Furthermore, it is known that the discretized problem is uniquely solvable for small coefficients of friction. Since the considered problem is nonsmooth, we exploit the generalized Mordukhovich’s differential calculus to compute the needed subgradient information.

The state problem is solved using successive approximations combined with the Total FETI (TFETI) method. The latter is based on tearing the bodies into “floating” subdomains, discretization by finite elements, and solving the resulting quadratic programming problem by augmented Lagrangians.

The presented numerical experiments demonstrate our method’s power and the importance of the proper modelling of 3D frictional contact problems. The state problem solution and the sensitivity analysis process were implemented in parallel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Beremlijski, J. Haslinger, M. Kočvara, R. Kučera, J. V. Outrata: Shape optimization in three-dimensional contact problems with Coulomb friction. SIAM J. Optim. 20 (2009), 416–444.

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Beremlijski, J. Haslinger, M. Kočvara, J. Outrata: Shape optimization in contact problems with Coulomb friction. SIAM J. Optim. 13 (2002), 561–587.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Beremlijski, J. Haslinger, J. V. Outrata, R. Pathó: Shape optimization in contact problems with Coulomb friction and a solution-dependent friction coefficient. SIAM J. Control Optim. 52 (2014), 3371–3400.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Beremlijski, A. Markopoulos: On solution of 3D contact shape optimization problems with Coulomb friction based on domain decomposition. EngOpt 2014 4th International Conference on Engineering Optimization. IDMEC — Instituto de Engenharia Mecanica, Lisboa, 2015, pp. 465–470.

    Google Scholar 

  5. F. H. Clarke: Optimization and Nonsmooth Analysis. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, New York, 1983.

    MATH  Google Scholar 

  6. Z. Dostál, T. Kozubek, A. Markopoulos, T. Brzobohatý, V. Vondrák, P. Horyl: Theoretically supported scalable TFETI algorithm for the solution of multibody 3D contact problems with friction. Comput. Methods Appl. Mech. Eng. 205–208 (2012), 110–120.

    Article  MathSciNet  MATH  Google Scholar 

  7. Z. Dostál, T. Kozubek, M. Sadowská, V. Vondrák: Scalable Algorithms for Contact Problems. Advances in Mechanics and Mathematics 36. Springer, New York, 2016.

    MATH  Google Scholar 

  8. C. Farhat, F.-X. Roux: An unconventional domain decomposition method for an efficient parallel solution of large-scale finite element systems. SIAM J. Sci. Stat. Comput. 13 (1992), 379–396.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Haslinger, T. Kozubek, R. Kučera, G. Peichl: Projected Schur complement method for solving non-symmetric systems arising from a smooth fictitious domain approach. Numer. Linear Algebra Appl. 14 (2007), 713–739.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Kučera: Minimizing quadratic functions with separable quadratic constraints. Optim. Methods Softw. 22 (2007), 453–467.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Kučera, K. Motyčková, A. Markopoulos, J. Haslinger: On the inexact symmetrized globally convergent semi-smooth Newton method for 3D contact problems with Tresca friction: The R-linear convergence rate. Optim. Methods Softw. 35 (2020), 65–86.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. S. Mordukhovich: Variational Analysis and Generalized Differentiation. I. Basic Theory. Grundlehren der Mathematischen Wissenschaften 330. Springer, Berlin, 2006.

    Book  Google Scholar 

  13. B. S. Mordukhovich: Variational Analysis and Generalized Differentiation. II. Applications. Grundlehren der Mathematischen Wissenschaften 331. Springer, Berlin, 2006.

    Google Scholar 

  14. B. S. Mordukhovich: Variational Analysis and Applications. Springer Monographs in Mathematics. Springer, Cham, 2018.

    Book  MATH  Google Scholar 

  15. A. Myśliński: Topology optimization of elasto-plastic contact problems. AIP Conf. Proc. 2239 (2020), Article ID 020031, 2 pages.

    Google Scholar 

  16. J. V. Outrata, M. Kočvara, J. Zowe: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints: Theory, Applications and Numerical Results. Nonconvex Optimization and Its Applications 28. Kluwer, Dordrecht, 1998.

    MATH  Google Scholar 

  17. L. Říha, T. Brzobohatý, A. Markopoulos: Hybrid parallelization of the total FETI solver. Adv. Eng. Softw. 103 (2017), 29–37.

    Article  Google Scholar 

  18. R. T. Rockafellar, R. J.-B. Wets: Variational Analysis. Grundlehren der Mathematischen Wissenschaften 317. Springer, Berlin, 1998.

    MATH  Google Scholar 

  19. H. Schramm, J. Zowe: A version of the bundle idea for minimizing a nonsmooth function: Conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2 (1992), 121–152.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Sharma, R. Rangarajan: A shape optimization approach for simulating contact of elastic membranes with rigid obstacles. Int. J. Numer. Methods Eng. 117 (2019), 371–404.

    Article  MathSciNet  Google Scholar 

  21. V. Vondrák, T. Kozubek, A. Markopoulos, Z. Dostál: Parallel solution of contact shape optimization problems based on total FETI domain decomposition method. Struct. Multidiscip. Optim. 42 (2010), 955–964.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Beremlijski.

Additional information

Dedicated to the memory of our friend Alexandros Markopoulos.

This work was partially supported by the European Regional Development Fund in “A Research Platform focused on Industry 4.0 and Robotics in Ostrava Agglomeration” project, Reg. No. CZ.02.1.01/0.0/0.0/17_049/0008425 within the Operational Programme Research, Development and Education. Further, this work was partially supported by the Ministry of Education, Youth and Sports of the Czech Republic through the e-INFRA CZ (ID:90140). This work was also partially supported by Grant of SGS No. SP2022/6 and No. SP2022/42, VSB-TU Ostrava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markopoulos, A., Beremlijski, P., Vlach, O. et al. Solution of 3D contact shape optimization problems with Coulomb friction based on TFETI. Appl Math 68, 405–424 (2023). https://doi.org/10.21136/AM.2022.0124-22

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2022.0124-22

Keywords

MSC 2020

Navigation