Skip to main content
Log in

The maximum regularity property of the steady Stokes problem associated with a flow through a profile cascade in Lr-framework

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We deal with the steady Stokes problem, associated with a flow of a viscous incompressible fluid through a spatially periodic profile cascade. Using the reduction to domain Ω, which represents one spatial period, the problem is formulated by means of boundary conditions of three types: the conditions of periodicity on curves Γ and Γ+ (lower and upper parts of ∂Ω), the Dirichlet boundary conditions on Γin (the inflow) and Γ0 (boundary of the profile) and an artificial “do nothing”-type boundary condition on Γout (the outflow). We show that the considered problem has a strong solution with the Γr-maximum regularity property for appropriately integrable given data. From this we deduce a series of properties of the corresponding strong Stokes operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Abe: On a resolvent estimate of the Stokes equation with Neumann-Dirichlet-type boundary condition on an infinite layer. Math. Methods Appl. Sci. 27 (2004), 1007–1048.

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Acevedo, C. Amrouche, C. Conca, A. Ghosh: Stokes and Navier-Stokes equations with Navier boundary conditions. C. R., Math., Acad. Sci. Paris 357 (2019), 115–119.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Agmon: Lectures on Elliptic Boundary Value Problems. Van Nostrand Mathematical Studies 2. D. Van Nostrand, New York, 1965.

    MATH  Google Scholar 

  4. C. Amrouche, N. El Houda Seloula: On the Stokes equation with Navier-type boundary conditions. Differ. Equ. Appl. 3 (2011), 581–607.

    MathSciNet  MATH  Google Scholar 

  5. C. Amrouche, M. Escobedo, A. Ghosh: Semigroup theory for the Stokes operator with Navier boundary condition in L p spaces. Available at https://arxiv.org/abs/1808.02001 (2018), 45 pages.

  6. C. Amrouche, V. Girault: Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czech. Math. J. 44 (1994), 109–140.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Beneš, P. Kučera: Solution to the Navier-Stokes equatons with mixed boundary conditions in two-dimensional bounded domains. Math. Nachr. 289 (2016), 194–212.

    Article  MathSciNet  MATH  Google Scholar 

  8. C.-H. Bruneau, P. Fabrie: New efficient boundary conditions for incompressible Navier-Stokes equations: A well-posedness result. RAIRO, Modélisation Math. Anal. Numér. 30 (1996), 815–840.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Chen, D. Osborne, Z. Qian: The Navier-Stokes equations with the kinematic and vorticity boundary conditions on non-flat boundaries. Acta Math. Sci., Ser. B, Engl. Ed. 29 (2009), 919–948.

    Article  MathSciNet  MATH  Google Scholar 

  10. G.-Q. Chen, Z. Qian: A study of the Navier-Stokes equations with the kinematic and Navier boundary conditions. Indiana Univ. Math. J. 59 (2010), 721–760.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Dauge: Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. Part I: Linearized equations. SIAM J. Math. Anal. 20 (1989), 74–97.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Feistauer, J. Felcman, V. Dolejší: Numerical simulation of compressible viscous flow through cascades of profiles. Z. Angew. Math. Mech. 76 (1996), 297–300.

    MATH  Google Scholar 

  13. M. Feistauer, T. Neustupa: On some aspects of analysis of incompressible flow through cascades of profiles. Operator Theoretical Methods and Applications to Mathematical Physics. Operator Theory: Advances and Applications 147. Birkhäuser, Basel, 2004, pp. 257–276.

    MATH  Google Scholar 

  14. M. Feistauer, T. Neustupa: On non-stationary viscous incompressible flow through a cascade of profiles. Math. Methods Appl. Sci. 29 (2006), 1907–1941.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Feistauer, T. Neustupa: On the existence of a weak solution of viscous incompressible flow past a cascade of profiles with an arbitrarily large inflow. J. Math. Fluid Mech. 15 (2013), 701–715.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. P. Galdi: An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady State Problems. Springer Monographs in Mathematics. Springer, New York, 2011.

    Book  MATH  Google Scholar 

  17. R. Glowinski: Numerical Methods for Nonlinear Variational Problems. Springer Series in Computational Physics. Springer, New York, 1984.

    Book  MATH  Google Scholar 

  18. P. Grisvard: Singularités des solutions du probléme de Stokes dans un polygone. Université de Nice, Nice, 1979, preprint. (In French.)

    Google Scholar 

  19. P. Grisvard: Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics 24. Pitman, Boston, 1985.

    MATH  Google Scholar 

  20. J. G. Heywood, R. Rannacher, S. Turek: Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 22 (1996), 325–352.

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Kato, M. Mitrea, G. Ponce, M. Taylor: Extension and representation of divergence-free vector fields on bounded domains. Math. Res. Lett. 7 (2000), 643–650.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. B. Kellogg, J. E. Osborn: A regularity result for the Stokes problem in a convex polygon. J. Func. Anal. 21 (1976), 397–431.

    Article  MathSciNet  MATH  Google Scholar 

  23. K. Kozel, P. Louda, J. Příhoda: Numerical solution of turbulent flow in a turbine cascade. Proc. Appl. Math. Mech. 6 (2006), 743–744.

    Article  Google Scholar 

  24. S. Kračmar, J. Neustupa: Modelling of flows of a viscous incompressible fluid through a channel by means of variational inequalities. Z. Angew. Math. Mech. 74 (1994), T637–T639.

    MATH  Google Scholar 

  25. S. Kračmar, J. Neustupa: A weak solvability of a steady variational inequality of the Navier-Stokes type with mixed boundary conditions. Nonlinear Anal., Theory Methods Appl. 47 (2001), 4169–4180.

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Kračmar, J. Neustupa: Modeling of the unsteady flow through a channel with an artificial outflow condition by the Navier-Stokes variational inequality. Math. Nachr. 291 (2018), 1801–1814.

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Kučera: Basic properties of solution of the non-steady Navier-Stokes equations with mixed boundary conditions in a bounded domain. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 55 (2009), 289–308.

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Kučera, Z. Skalák: Local solutions to the Navier-Stokes equations with mixed boundary conditions. Acta Appl. Math. 54 (1998), 275–288.

    Article  MathSciNet  MATH  Google Scholar 

  29. O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach Science Publishers, New York, 1969.

    MATH  Google Scholar 

  30. D. Medková: One problem of the Navier type for the Stokes system in planar domains. J. Differ. Equations 261 (2016), 5670–5689.

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Medková: Several non-standard problems for the stationary Stokes system. Analysis, München 40 (2020), 1–17.

    MathSciNet  MATH  Google Scholar 

  32. T. Neustupa: Question of existence and uniqueness of solution for Navier-Stokes equation with linear “do-nothing” type boundary condition on the outflow. Numerical Analysis and Its Applications. Lecture Notes in Computer Science 5434. Springer, Berlin, 2009, pp. 431–438.

    MATH  Google Scholar 

  33. T. Neustupa: The analysis of stationary viscous incompressible flow through a rotating radial blade machine, existence of a weak solution. Appl. Math. Comput. 219 (2012), 3316–3322.

    Article  MathSciNet  MATH  Google Scholar 

  34. T. Neustupa: A steady flow through a plane cascade of profiles with an arbitrarily large inflow: The mathematical model, existence of a weak solution. Appl. Math. Comput. 272 (2016), 687–691.

    Article  MathSciNet  MATH  Google Scholar 

  35. T. Neustupa: The weak Stokes problem associated with a flow through a profile cascade in L r-framework. Available at https://arxiv.org/abs/2009.08234v2 (2020), 20 pages.

  36. T. Neustupa: The maximum regularity property of the steady Stokes problem associated with a flow through a profile cascade. Acta Appl. Math. 172 (2021), Article ID 3, 23 pages.

  37. H. Sohr: The Navier-Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts. Birkhäuser, Basel, 2001.

    Book  MATH  Google Scholar 

  38. P. Straka, J. Příhoda, M. Kožíšek, J. Fürst: Simulation of transitional flows through a turbine blade cascade with heat transfer for various flow conditions. EPJ Web Conf. 143 (2017), Article ID 02118, 6 pages.

  39. R. Temam: Navier-Stokes Equations: Theory and Numerical Analysis. Studies in Mathematics and Its Applications 2. North-Holland, Amsterdam, 1977.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Neustupa.

Additional information

The research has been supported by European Regional Development Fund-Project “Center for Advanced Applied Science” No. CZ.02.1.01/0.0/0.0/16_019/0000778.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neustupa, T. The maximum regularity property of the steady Stokes problem associated with a flow through a profile cascade in Lr-framework. Appl Math 68, 171–190 (2022). https://doi.org/10.21136/AM.2022.0123-21

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2022.0123-21

Keywords

MSC 2020

Navigation