Abstract
In this article, we study the existence of nontrivial weak solutions for the following boundary value problem:
where Ω is a bounded domain with smooth boundary in \({\mathbb{R}^N},\;\Omega \cap \left\{ {{x_j} = 0} \right\} \ne \emptyset \) for some j, Δγ is a subelliptic linear operator of the type
where γ(x) = (γ1(x), γ2(x), …, γN(x)) satisfies certain homogeneity conditions and degenerates at the coordinate hyperplanes and the nonlinearity f(x, ξ) is of subcritical growth and does not satisfy the Ambrosetti-Rabinowitz (AR) condition.
This is a preview of subscription content, access via your institution.
References
A. Ambrosetti, A. Malchiodi: Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge Studies in Advanced Mathematics 104. Cambridge University Press, Cambridge, 2007.
A. Ambrosetti, P. H. Rabinowitz: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973), 349–381.
C. T. Anh, B. K. My: Existence of solutions to Δλ-Laplace equations without the Ambrosetti-Rabinowitz condition. Complex Var. Elliptic Equ. 61 (2016), 137–150.
H. Brezis: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York, 2011.
G. Cerami: An existence criterion for the critical points on unbounded manifolds. Rend., Sci. Mat. Fis. Chim. Geol. 112 (1978), 332–336. (In Italian.)
G. Cerami: Sull’esistenza di autovalori per un problema al contorno non lineare. Ann. Mat. Pura Appl., IV. Ser. 124 (1980), 161–179. (In Italian.)
B. Franchi, E. Lanconelli: An embedding theorem for Sobolev spaces related to non-smooth vector fields and Harnack inequality. Commun. Partial Differ. Equations 9 (1984), 1237–1264.
N. Garofalo, E. Lanconelli: Existence and nonexistence results for semilinear equations on the Heisenberg group. Indiana Univ. Math. J. 41 (1992), 71–98.
V. V. Grushin: On a class of hypoelliptic operators. Math. USSR, Sb. 12 (1970), 458–476; translation from Mat. Sb. (N.S.) 83 (1970), 456–473.
D. S. Jerison: The Dirichlet problem for the Kohn Laplacian on the Heisenberg group II. J. Funt. Anal. 43 (1981), 224–257.
D. S. Jerison, J. M. Lee: The Yamabe problem on CR manifolds. J. Diff. Geom. 25 (1987), 167–197.
A. E. Kogoj, E. Lanconelli: On semilinear Δλ-Laplace equation. Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 4637–4649.
A. E. Kogoj, E. Lanconelli: Linear and semilinear problems involving Δλ-Laplacians. Electron. J. Differ. Equ. 2018 (2018), Article ID 25, 167–178.
N. Lam, G. Lu: N-Laplacian equations in \({\mathbb{R}^N}\) with subcritical and critical growth without the Ambrosetti-Rabinowitz condition. Adv. Nonlinear Stud. 13 (2013), 289–308.
N. Lam, G. Lu: Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition. J. Geom. Anal. 24 (2014), 118–143.
G. Li, C. Wang: The existence of a nontrivial solution to a nonlinear elliptic problem of linking type without the Ambrosetti-Rabinowitz condition. Ann. Acad. Sci. Fenn., Math. 36 (2011), 461–480.
S. Li, S. Wu, H.-S. Zhou: Solutions to semilinear elliptic problems with combined non-linearities. J. Differ. Equations 185 (2002), 200–224.
S. Liu: On superlinear problems without the Ambrosetti and Rabinowitz condition. Nonlinear Anal., Theory Methods Appl., Ser. A 73 (2010), 788–795.
Z. Liu, Z.-Q. Wang: On the Ambrosetti-Rabinowitz superlinear condition. Adv. Nonlinear Stud. 4 (2004), 563–574.
D. T. Luyen: Two nontrivial solutions of boundary-value problems for semilinear Δγ differential equations. Math. Notes 101 (2017), 815–823.
D. T. Luyen: Existence of nontrivial solution for fourth-order semilinear Δγ-Laplace equation in \({\mathbb{R}^N}\). Electron. J. Qual. Theory Differ. Equ. 2019 (2019), Article ID 78, 12 pages.
D. T. Luyen, N. M. Tri: Existence of solutions to boundary-value problems for semilinear Δγ differential equations. Math. Notes 97 (2015), 73–84.
D. T. Luyen, N. M. Tri: Global attractor of the Cauchy problem for a semilinear degenerate damped hyperbolic equation involving the Grushin operator. Ann. Pol. Math. 117 (2016), 141–161.
D. T. Luyen, N. M. Tri: Large-time behavior of solutions to degenerate damped hyperbolic equations. Sib. Math. J. 57 (2016), 632–649; translation from Sib. Mat. Zh. 57 (2016), 809–829.
D. T. Luyen, N. M. Tri: Existence of infinitely many solutions for semilinear degenerate Schrödinger equations. J. Math. Anal. Appl. 461 (2018), 1271–1286.
D. T. Luyen, N. M. Tri: Infinitely many solutions for a class of perturbed degenerate elliptic equations involving the Grushin operator. Complex Var. Elliptic Equ. 65 (2020), 2135–2150.
O. H. Miyagaki, M. A. S. Souto: Superlinear problems without Ambrosetti and Rabinowitz growth condition. J. Differ. Equations 245 (2008), 3628–3638.
P. H. Rabinowitz: Minimax Methods in Critical Point theory with Applications to Differential Equations. Regional Conference Series in Mathematics 65. American Mathematical Society, Providence, 1986.
M. Schechter, W. Zou: Superlinear problems. Pac. J. Math. 214 (2004), 145–160.
N. T. C. Thuy, N. M. Tri: Some existence and nonexistence results for boundary value problems for semilinear elliptic degenerate operators. Russ. J. Math. Phys. 9 (2002), 365–370.
P. T. Thuy, N. M. Tri: Nontrivial solutions to boundary value problems for semilinear strongly degenerate elliptic differential equations. NoDEA, Nonlinear Differ. Equ. Appl. 19 (2012), 279–298.
P. T. Thuy, N. M. Tri: Long time behavior of solutions to semilinear parabolic equations involving strongly degenerate elliptic differential operators. NoDEA, Nonlinear Differ. Equ. Appl. 20 (2013), 1213–1224.
N. M. Tri: Critical Sobolev exponent for degenerate elliptic operators. Acta Math. Vietnam. 23 (1998), 83–94.
N. M. Tri: On Grushin’s equation. Math. Notes 63 (1998), 84–93; translation from Mat. Zametki 63 (1998), 95–105.
N. M. Tri: Semilinear Degenerate Elliptic Differential Equations: Local and Global Theories. Lambert Academic Publishing, Saarbrücken, 2010.
N. M. Tri: Recent Progress in the Theory of Semilinear Equations Involving Degenerate Elliptic Differential Operators. Publ. House Sci. Technology, Hanoi, 2014.
Acknowledgements
The author warmly thanks the anonymous referees for the careful reading of the manuscript and for their useful and nice comments.
Author information
Authors and Affiliations
Corresponding author
Additional information
This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2020.13.
Rights and permissions
About this article
Cite this article
Luyen, D.T. Nontrivial solutions to boundary value problems for semilinear Δγ-differential equations. Appl Math 66, 461–478 (2021). https://doi.org/10.21136/AM.2021.0363-19
Received:
Published:
Issue Date:
DOI: https://doi.org/10.21136/AM.2021.0363-19
Keywords
- Δγ-Laplace problem
- Cerami condition
- variational method
- weak solution
- Mountain Pass Theorem
MSC 2020
- 35J70
- 35J20
- 35J25
- 35D30