Skip to main content

Complexity of Computing Interval Matrix Powers for Special Classes of Matrices


Computing powers of interval matrices is a computationally hard problem. Indeed, it is NP-hard even when the exponent is 3 and the matrices only have interval components in one row and one column. Motivated by this result, we consider special types of interval matrices where the interval components occupy specific positions. We show that computing the third power of matrices with only one column occupied by interval components can be solved in cubic time; so the asymptotic time complexity is the same as for the real case (considering the textbook matrix product method). We further show that for a fixed exponent k and for each interval matrix (of an arbitrary size) whose kth power has components that can be expressed as polynomials in a fixed number of interval variables, the computation of the kth power is polynomial up to a given accuracy. Polynomiality is shown by using the Tarski method of quantifier elimination. This result is used to show the polynomiality of computing the cube of interval band matrices, among others. Additionally, we study parametric matrices and prove NP-hardness already for their squares. We also describe one specific class of interval parametric matrices that can be squared by a polynomial algorithm.

This is a preview of subscription content, access via your institution.


  1. H.-S. Ahn, K. L. Moore, Y. Q. Chen: Iterative Learning Control: Robustness and Monotonic Convergence for Interval Systems. Communications and Control Engineering. Springer, London, 2007.

    Google Scholar 

  2. R. C. Buck: Partition of space. Am. Math. Mon. 50 (1943), 541–544.

    MathSciNet  Article  Google Scholar 

  3. M. Černý, M. Hladík: The complexity of computation and approximation of the t-ratio over one-dimensional interval data. Comput. Stat. Data Anal. 80 (2014), 26–43.

    MathSciNet  Article  Google Scholar 

  4. G. E. Collins: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation. Springer, Wien, 1998, pp. 85–121.

    Google Scholar 

  5. H. Edelsbrunner, L. J. Guibas: Topologically sweeping an arrangement. J. Comput. Syst. Sci. 38 (1989), 165–194.

    MathSciNet  Article  Google Scholar 

  6. J. Garloff, E. D. Popova, A. P. Smith: Solving linear systems with polynomial parameter dependency with application to the verified solution of problems in structural mechanics. Optimization, Simulation, and Control. Springer Optimization and Its Applications 76. Springer, New York, 2013, pp. 301–318.

    MATH  Google Scholar 

  7. J. Garloff, A. P. Smith: Preface (Special issue on the use of Bernstein polynomials in reliable computing: A centennial anniversary). Reliab. Comput. 17 (2012), i–vii.

    MathSciNet  Google Scholar 

  8. A. Goldsztejn, A. Neumaier: On the exponentiation of interval matrices. Reliab. Comput. 20 (2014), 53–72.

    MathSciNet  Google Scholar 

  9. E. R. Hansen: Sharpness in interval computations. Reliab. Comput. 3 (1997), 17–29.

    MathSciNet  Article  Google Scholar 

  10. D. Hartman, M. Hladík: Tight bounds on the radius of nonsingularity. Scientific Computing, Computer Arithmetic, and Validated Numerics. Lecture Notes in Computer Science 9553. Springer, Cham, 2016, pp. 109–115.

    Chapter  Google Scholar 

  11. D. Hartman, M. Hladík: Regularity radius: Properties, approximation and a not a priori exponential algorithm. Electron. J. Linear Algebra 33 (2018), 122–136.

    MathSciNet  Article  Google Scholar 

  12. D. Hartman, M. Hladík, D. Říha: Computing the spectral decomposition of interval matrices and a study on interval matrix power. Available at

  13. M. Hladík: An overview of polynomially computable characteristics of special interval matrices. Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy etc. Methods and Their Applications. Studies in Computational Intelligence 835. Springer, Cham, 2020, pp. 295–310.

    Book  Google Scholar 

  14. M. Hladík, M. Černý, M. Rada: A new polynomially solvable class of quadratic optimization problems with box constraints. Available at

  15. O. Kosheleva, V. Kreinovich, G. Mayer, H. T. Nguyen: Computing the cube of an interval matrix is NP-hard. SAC’ 05: Proceedings of the 2005 ACM Symposium on Applied Computing, Volume 2. ACM, New York, 2005, pp. 1449–1453.

    Chapter  Google Scholar 

  16. V. Kreinovich, A. Lakeyev, J. Rohn, P. Kahl: Computational Complexity and Feasibility of Data Processing and Interval Computations. Applied Optimization 10. Kluwer Academic Publishers, Dordrecht, 1998.

    Book  Google Scholar 

  17. R. Leroy: Convergence under subdivision and complexity of polynomial minimization in the simplicial Bernstein basis. Reliab. Comput. 17 (2012), 11–21.

    MathSciNet  Google Scholar 

  18. G. Mayer: Interval Analysis and Automatic Result Verification. De Gruyter Studies in Mathematics 65. De Gruyter, Berlin, 2017.

    Book  Google Scholar 

  19. R. E. Moore, R. B. Kearfott, M. J. Cloud: Introduction to Interval Analysis. SIAM, Philadelphia, 2009.

    Book  Google Scholar 

  20. E. P. Oppenheimer, A. N. Michel: Application of interval analysis techniques to linear systems. II. The interval matrix exponential function. IEEE Trans. Circuits Syst. 35 (1988), 1230–1242.

    Google Scholar 

  21. S. Poljak, J. Rohn: Checking robust nonsingularity is NP-hard. Math. Control Signals Syst. 6 (1993), 1–9.

    MathSciNet  Article  Google Scholar 

  22. J. Rohn: Computing the norm ∥A∞,1 is NP-hard. Linear Multilinear Algebra 47 (2000), 195–204.

    MathSciNet  Article  Google Scholar 

  23. I. Skalna: Parametric Interval Algebraic Systems. Studies in Computational Intelligence 766. Springer, Cham, 2018.

    Book  Google Scholar 

  24. I. Skalna, M. Hladík: Direct and iterative methods for interval parametric algebraic systems producing parametric solutions. Numer. Linear Algebra Appl. 26 (2019), Article ID e2229, 24 pages.

  25. A. Tarski: A Decision Method for Elementary Algebra and Geometry. RAND Corporation, Santa Monica, California, 1948.

    MATH  Google Scholar 

  26. Y. M. Zhang, R. Kovacevic: Robust control of interval plants: A time domain method. IEE Proc., Control Theory Appl. 144 (1997), 347–353.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to David Hartman or Milan Hladík.

Additional information

The research has been supported by the Czech Science Foundation Grant P403-18-04735S.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hartman, D., Hladík, M. Complexity of Computing Interval Matrix Powers for Special Classes of Matrices. Appl Math 65, 645–663 (2020).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • matrix power
  • interval matrix
  • interval computations
  • NP-hardness

MSC 2020

  • 65G40
  • 15Bxx