Skip to main content
Log in

The Collatz-Wielandt Quotient for Pairs of Nonnegative Operators

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

In this paper we consider two versions of the Collatz-Wielandt quotient for a pair of nonnegative operators A, B that map a given pointed generating cone in the first space into a given pointed generating cone in the second space. If the two spaces and two cones are identical, and B is the identity operator, then one version of this quotient is the spectral radius of A. In some applications, as commodity pricing, power control in wireless networks and quantum information theory, one needs to deal with the Collatz-Wielandt quotient for two nonnegative operators. In this paper we treat the two important cases: a pair of rectangular nonnegative matrices and a pair of completely positive operators. We give a characterization of minimal optimal solutions and polynomially computable bounds on the Collatz-Wielandt quotient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Avin, M. Borokhovich, Y. Haddad, E. Kantor, Z. Lotker, M. Parter, D. Peleg: Generalized Perron-Frobenius theorem for multiple choice matrices, and applications. Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013. SIAM, Philadelphia, 2013, pp. 478–497.

    Google Scholar 

  2. C. Avin, M. Borokhovich, Y. Haddad, E. Kantor, Z. Lotker, M. Parter, D. Peleg: Generalized Perron-Frobenius theorem for nonsquare matrices. Available at https://arxiv.org/abs/1308.5915 (2013), 55 pages.

  3. A. Berman, R. J. Plemmons: Nonnegative Matrices in Mathematical Sciences. Computer Science and Applied Mathematics. Academic Press, New York, 1979.

    Google Scholar 

  4. G. Boutry, M. Elad, G. H. Golub, P. Milanfar: The generalized eigenvalue problem for nonsquare pencils using a minimal perturbation approach. SIAM J. Matrix Anal. Appl. 27 (2005), 582–601.

    Article  MathSciNet  Google Scholar 

  5. S. Boyd, L. Vandenberghe: Convex Optimization. Cambridge University Press, New York, 2004.

    Book  Google Scholar 

  6. M.-D. Choi: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10 (1975), 285–290.

    Article  MathSciNet  Google Scholar 

  7. D. Chu, G. H. Golub: On a generalized eigenvalue problem for nonsquare pencils. SIAM J. Matrix Anal. Appl. 28 (2006), 770–787.

    Article  MathSciNet  Google Scholar 

  8. L. Collatz: Einschliessungssatz für die charakteristischen Zahlen von Matrizen. Math. Z. 48 (1942), 221–226. (In German.)

    Article  MathSciNet  Google Scholar 

  9. I. Erdelyi: On the matrix equation Ax = λBx. J. Math. Anal. Appl. 17 (1967), 119–132.

    Article  MathSciNet  Google Scholar 

  10. S. Friedland: Characterizations of the spectral radius of positive operators. Linear Algebra Appl. 134 (1990), 93–105.

    Article  MathSciNet  Google Scholar 

  11. S. Friedland: Characterizations of spectral radius of positive operators on C* algebras. J. Funct. Anal. 97 (1991), 64–70.

    Article  MathSciNet  Google Scholar 

  12. S. Friedland: Matrices: Algebra, Analysis and Applications. World Scientific, Hackensack, 2016.

    MATH  Google Scholar 

  13. S. Friedland, R. Loewy: On the extreme points of quantum channels. Linear Algebra Appl. 498 (2016), 553–573.

    Article  MathSciNet  Google Scholar 

  14. G. F. Frobenius: Über Matrizen aus positiven Elementen. Berl. Ber. 1908 (1908), 471–476. (In German.)

    MATH  Google Scholar 

  15. G. F. Frobenius: Über Matrizen aus positiven Elementen II. Berl. Ber. 1909 (1909), 514–518. (In German.)

    MATH  Google Scholar 

  16. G. F. Frobenius: Über Matrizen aus nicht negativen Elementen. Berl. Ber. 1912 (1912), 456–477. (In German.)

    MATH  Google Scholar 

  17. F. R. Gantmacher: The Theory of Matrices. Vol. 1. Chelsea Publishing, New York, 1959.

    MATH  Google Scholar 

  18. F. R. Gantmacher: The Theory of Matrices. Vol. 2. Chelsea Publishing, New York, 1959.

    MATH  Google Scholar 

  19. G. H. Golub, C. F. Van Loan: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, 2013.

    Google Scholar 

  20. M. Grötschel, L. Lovász, A. Schrijver: Geometric Algorithms and Combinatorial Optimization. Algorithms and Combinatorics 2. Springer, Berlin, 1988.

    Book  Google Scholar 

  21. M. B. Hastings: Superadditivity of communication capacity using entangled inputs. Nature Phys. 5 (2009), 255–257.

    Article  Google Scholar 

  22. A. S. Holevo: The additivity problem in quantum information theory. Proceedings of the International Congress of Mathematicians (ICM). Vol. III. European Mathematical Society, Zürich, 2006, pp. 999–1018.

    MATH  Google Scholar 

  23. A. S. Holevo: Quantum Systems, Channels, Information: A Mathematical Introduction. De Gruyter Studies in Mathematical Physics 16. DeGruyter, Berlin, 2012.

    Book  Google Scholar 

  24. R. A. Horn, C. R. Johnson: Matrix Analysis. Cambridge University Press, Cambridge, 2013.

    MATH  Google Scholar 

  25. S. Karlin: Positive operators. J. Math. Mech. 8 (1959), 905–937.

    MATH  Google Scholar 

  26. M. G. Kretn, M. A. Rutman: Linear operators leaving invariant cone in a Banach space. Usp. Mat. Nauk 3 (1948), 3–95. (In Russian.)

    MathSciNet  Google Scholar 

  27. L. Lovász: An Algorithmic Theory of Numbers, Graphs and Convexity. CBMS-NSF Regional Conference Series in Applied Mathematics 50. SIAM, Philadelphia, 1986.

    Book  Google Scholar 

  28. O. L. Mangasarian: Perron-Frobenius properties of Ax — λBx. J. Math. Anal. Appl. 36 (1971), 86–102.

    Article  MathSciNet  Google Scholar 

  29. C. B. Mendl, M. M. Wolf: Unital quantum channels — convex structure and revivals of Birkhoffs theorem. Commun. Math. Phys. 289 (2009), 1057–1086.

    Article  MathSciNet  Google Scholar 

  30. C. D. Meyer: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia, 2000.

    Book  Google Scholar 

  31. H. Minc: Nonnegative Matrices. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York, 1988.

    MATH  Google Scholar 

  32. O. Perron: Zur Theorie der Matrices. Math. Ann. 64 (1907), 248–263. (In German.)

    Article  MathSciNet  Google Scholar 

  33. D. Petz: Quantum Information Theory and Quantum Statistics. Theoretical and Mathematical Physics. Springer, Berlin, 2008.

    Google Scholar 

  34. S. U. Pillai, T. Suel, S. Cha: The Perron-Frobenius theorem: Some of its applications. IEEE Signal Process. Magazine 22 (2005), 62–75.

    Article  Google Scholar 

  35. H. H. Schaeffer: Banach Lattices and Positive Operators. Die Grundlehren der mathematischen Wissenschaften 215. Springer, Berlin, 1974.

    Book  Google Scholar 

  36. E. Seneta: Non-Negative Matrices and Markov Chains. Springer Series in Statistics. Springer, New York, 1981.

    Book  Google Scholar 

  37. M. E. Shirokov: On the structure of optimal sets for a quantum channel. Probl. Inf. Transm. 42 (2006), 282–297; Translation from Probl. Peredachi Inf. 42 (2006), 23–40.

    Article  MathSciNet  Google Scholar 

  38. P. W. Shor: Additivity of the classical capacity of entanglement-breaking quantum channels. J. Math. Phys. 43 (2002), 4334–4340.

    Article  MathSciNet  Google Scholar 

  39. R. Srikant: The Mathematics of Internet Congestion Control. Systems and Control: Foundations and Applications. Birkhäuser, Boston, 2004.

    MATH  Google Scholar 

  40. H. Wielandt: Unzerlegbare, nicht-negative Matrizen. Math. Z. 52 (1950), 642–648. (In German.)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks the referee for his comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shmuel Friedland.

Additional information

S. Friedland was partially supported by Simons collaboration grant for mathematicians.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedland, S. The Collatz-Wielandt Quotient for Pairs of Nonnegative Operators. Appl Math 65, 557–597 (2020). https://doi.org/10.21136/AM.2020.0260-19

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2020.0260-19

Keywords

MSC 2020

Navigation