Skip to main content
Log in

Asymptotic Lower Bounds for Eigenvalues of the Steklov Eigenvalue Problem with Variable Coefficients

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, using a new correction to the Crouzeix-Raviart finite element eigenvalue approximations, we obtain asymptotic lower bounds of eigenvalues for the Steklov eigenvalue problem with variable coefficients on d-dimensional domains (d = 2, 3). In addition, we prove that the corrected eigenvalues converge to the exact ones from below. The new result removes the conditions of eigenfunction being singular and eigenvalue being large enough, which are usually required in the existing arguments about asymptotic lower bounds. Further, we prove that the corrected eigenvalues still maintain the same convergence order as uncorrected eigenvalues. Finally, numerical experiments validate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Alonso, A. Dello Russo: Spectral approximation of variationally-posed eigenvalue problems by nonconforming methods. J. Comput. Appl. Math. 223 (2009), 177–197.

    Article  MathSciNet  Google Scholar 

  2. M. G. Armentano, R. G. Durán: Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. ETNA, Electron. Trans. Numer. Anal. 17 (2004), 93–101.

    MathSciNet  MATH  Google Scholar 

  3. I. Babuška, J. Osborn: Eigenvalue problems. Finite Element Methods (Part 1). Handbook of Numererical Analysis II. North-Holland, Amsterdam, 1991, pp. 641–787.

    Google Scholar 

  4. D. Boffi: Finite element approximation of eigenvalue problems. Acta Numerica 19 (2010), 1–120.

    Article  MathSciNet  Google Scholar 

  5. J. H. Bramble, J. E. Osborn: Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Azis, ed.). Academic Press, New York, 1972, pp. 387–408.

    Chapter  Google Scholar 

  6. S. C. Brenner, L. R. Scott: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics 15. Springer, Berlin, 2002.

    Google Scholar 

  7. C. Carstensen, D. Gallistl: Guaranteed lower eigenvalue bounds for the biharmonic equation. Numer. Math. 126 (2014), 33–51.

    Article  MathSciNet  Google Scholar 

  8. C. Carstensen, J. Gedicke: Guaranteed lower bounds for eigenvalues. Math. Comput. 83 (2014), 2605–2629.

    Article  MathSciNet  Google Scholar 

  9. C. Carstensen, J. Gedicke, D. Rim: Explicit error estimates for Courant, Crouzeix-Raviart and Raviart-Thomas finite element methods. J. Comput. Math. 30 (2012), 337–353.

    Article  MathSciNet  Google Scholar 

  10. I. Chavel, E. A. Feldman: An optimal Poincaré inequality for convex domains of non-negative curvature. Arch. Ration. Mech. Anal. 65 (1977), 263–273.

    Article  Google Scholar 

  11. L. Chen: iFEM: an innovative finite element methods package in MATLAB. Technical Report, University of California, Irvine, 2008. Available at https://pdfs.semanticscholar.org/b841/653da0c77051e91f411d4363afe3727f5cc5.pdf.

  12. M. Crouzeix, P.-A. Raviart: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Franc. Automat. Inform. Rech. Operat. 7 (1973), 33–75.

    MathSciNet  MATH  Google Scholar 

  13. A. Dello Russo, A. E. Alonso: A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems. Comput. Math. Appl. 62 (2011), 4100–4117.

    Article  MathSciNet  Google Scholar 

  14. E. M. Garau, P. Morin: Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems. IMA J. Numer. Anal. 31 (2011), 914–946.

    Article  MathSciNet  Google Scholar 

  15. J. Hu, Y. Huang: Lower bounds for eigenvalues of the Stokes operator. Adv. Appl. Math. Mech. 5 (2013), 1–18.

    Article  MathSciNet  Google Scholar 

  16. J. Hu, Y. Huang, Q. Lin: Lower bounds for eigenvalues of elliptic operators: by nonconforming finite element methods. J. Sci. Comput. 61 (2014), 196–221.

    Article  MathSciNet  Google Scholar 

  17. J. Hu, Y. Huang, R. Ma: Guaranteed lower bounds for eigenvalues of elliptic operators. J. Sci. Comput. 67 (2016), 1181–1197.

    Article  MathSciNet  Google Scholar 

  18. Y. Li: Lower approximation of eigenvalues by the nonconforming finite element method. Math. Numer. Sin. 30 (2008), 195–200. (In Chinese.)

    MathSciNet  MATH  Google Scholar 

  19. Q. Li, Q. Lin, H. Xie: Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations. Appl. Math., Praha 58 (2013), 129–151.

    Article  MathSciNet  Google Scholar 

  20. Q. Li, X. Liu: Explicit finite element error estimates for nonhomogeneous Neumann problems. Appl. Math., Praha 63 (2018), 367–379.

    Article  MathSciNet  Google Scholar 

  21. Q. Lin, H.-T. Huang, Z.-C. Li: New expansions of numerical eigenvalues for −Δu = λϱu by nonconforming elements. Math. Comput. 77 (2008), 2061–2084.

    Article  MathSciNet  Google Scholar 

  22. Q. Lin, H. Xie: Recent results on lower bounds of eigenvalue problems by nonconforming finite element methods. Inverse Probl. Imaging 7 (2013), 795–811.

    Article  MathSciNet  Google Scholar 

  23. Q. Lin, H. Xie, F. Luo, Y. Li, Y. Yang: Stokes eigenvalue approximations from below with nonconforming mixed finite element methods. Math. Pract. Theory 40 (2010), 157–168.

    MathSciNet  Google Scholar 

  24. X. Liu: A framework of verified eigenvalue bounds for self-adjoint differential operators. Appl. Math. Comput. 267 (2015), 341–355.

    MathSciNet  MATH  Google Scholar 

  25. F. Luo, Q. Lin, H. Xie: Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods. Sci. China, Math. 55 (2012), 1069–1082.

    Article  MathSciNet  Google Scholar 

  26. J. T. Oden, J. N. Reddy: An Introduction to the Mathematical Theory of Finite Elements. Pure and Applied Mathematics. Wiley-Interscience, New York, 1976.

    Google Scholar 

  27. G. Savaré: Regularity results for elliptic equations in Lipschitz domains. J. Funct. Anal. 152 (1998), 176–201.

    Article  MathSciNet  Google Scholar 

  28. I. Šebestová, T. Vejchodský: Two-sided bounds for eigenvalues of differential operators with applications to Friedrichs, Poincaré, trace, and similar constants. SIAM J. Numer. Anal. 52 (2014), 308–329.

    Article  MathSciNet  Google Scholar 

  29. M. Xie, H. Xie, X. Liu: Explicit lower bounds for Stokes eigenvalue problems by using nonconforming finite elements. Japan J. Ind. Appl. Math. 35 (2018), 335–354.

    Article  MathSciNet  Google Scholar 

  30. Y. Yang, J. Han, H. Bi, Y. Yu: The lower/upper bound property of the Crouzeix-Raviart element eigenvalues on adaptive meshes. J. Sci. Comput. 62 (2015), 284–299.

    Article  MathSciNet  Google Scholar 

  31. Y. Yang, Q. Li, S. Li: Nonconforming finite element approximations of the Steklov eigenvalue problem. Appl. Numer. Math. 59 (2009), 2388–2401.

    Article  MathSciNet  Google Scholar 

  32. Y. Yang, Q. Lin, H. Bi, Q. Li: Eigenvalue approximations from below using Morley elements. Adv. Comput. Math. 36 (2012), 443–450.

    Article  MathSciNet  Google Scholar 

  33. Y. Yang, Y. Zhang, H. Bi: A type of adaptive C0 non-conforming finite element method for the Helmholtz transmission eigenvalue problem. Comput. Methods Appl. Mech. Eng. 360 (2020), Article ID 112697, 20 pages.

  34. Y. Yang, Z. Zhang, F. Lin: Eigenvalue approximation from below using non-conforming finite elements. Sci. China, Math. 53 (2010), 137–150.

    Article  MathSciNet  Google Scholar 

  35. C. You, H. Xie, X. Liu: Guaranteed eigenvalue bounds for the Steklov eigenvalue problem. SIAM J. Numer. Anal. 57 (2019), 1395–1410.

    Article  MathSciNet  Google Scholar 

  36. Z. Zhang, Y. Yang, Z. Chen: Eigenvalue approximation from below by Wilson’s element. Math. Numer. Sin. 29 (2007), 319–321. (In Chinese.)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We cordially thank the editor and the referees for their valuable comments and suggestions which led to the improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yidu Yang.

Additional information

This work is supported by the Young Scientific and Technical Talents Development of Education Department of Guizhou Province (KY [2018]153), the National Natural Science Foundation of China (Grant No. 11561014 and No. 11761022).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Bi, H. & Yang, Y. Asymptotic Lower Bounds for Eigenvalues of the Steklov Eigenvalue Problem with Variable Coefficients. Appl Math 66, 1–19 (2021). https://doi.org/10.21136/AM.2020.0108-19

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2020.0108-19

Keywords

MSC 2020

Navigation