Skip to main content
Log in

Inertial forward-backward splitting method in Banach spaces with application to compressed sensing

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We propose a Halpern-type forward-backward splitting with inertial extrapolation step for finding a zero of the sum of accretive operators in Banach spaces. Strong convergence of the sequence of iterates generated by the method proposed is obtained under mild assumptions. We give some numerical results in compressed sensing to validate the theoretical analysis results. Our result is one of the lew available inertial-type methods for zeros of the sum of accretive operators in Banach spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Alvarez. H. Attouch: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9 (2001), 3–11.

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Attouch, A. Cabot: Convergence of a relaxed inertial forward-backward algorithm for structured monotone inclusions. Available at https://doi.org/hal.archives-ouvertes.fr/hal-01782016 (2018), Hal ID: 01782016, 35 pages.

    MATH  Google Scholar 

  3. J.-B. Baillon. G. Haddad: Quelques propriétés des opérateurs angle-bornés et n-cycliquement monotones. Isr. J. Math. 26 (1977), 137–150. (In French.)

    Article  MATH  Google Scholar 

  4. A. Beck, M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2 (2009), 183–202.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. P. Bertsekas, J. N. Tsitsiklis: Parallel and Distributed Computation: Numerical Methods. Athena Scientific, Belmont, 2014.

    MATH  Google Scholar 

  6. R. I. Boţ, E. R. Csetnek: An inertial alternating direction method of multipliers. Minimax Theory Appl. 1 (2016), 29–49.

    MathSciNet  MATH  Google Scholar 

  7. R. I. Boţ, E. R. Csetnek, C. Hendrich: Inertial Douglas-Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256 (2015), 472–487.

    MathSciNet  MATH  Google Scholar 

  8. H. Brézis, P.-L. Lions: Produits infinis de résolvantes. Isr. J. Math. 29 (1978), 329–345. (In French.)

    Article  MATH  Google Scholar 

  9. C. Byrne: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20 (2004), 103–120.

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Chen, R. H. Chan, S. Ma. J. Yang: Inertial proximal ADMM for linearly constrained separable convex optimization. SIAM J. Imaging Sci. 8 (2015), 2239–2267.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. H.-G. Chen, R. T. Rockafellar: Convergence rates in forward-backward splitting. SIAM J. Optim. 7 (1997), 421–444.

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Chidume: Geometric Properties of Banach Spaces and Nonlinear Iterations. Lecture Notes in Mathematics 1965, Springer, Berlin, 2009.

    Google Scholar 

  13. P. Cholamjiak: A generalized forward-backward splitting method for solving quasi inclusion problems in Banach spaces. Numer. Algorithms 71 (2016), 915–932.

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Cholamjiak, W. Cholamjiak, S. Suantai: A modified regularization method for finding zeros of monotone operators in Hilbert spaces. J. Inequal. Appl. 2015 (2015), Article ID 220, 10 pages.

  15. W. Cholamjiak, P. Cholamjiak. S. Suantai: An inertial forward-backward splitting method for solving inclusion problems in Hubert spaces. J. Fixed Point Theory Appl. 20 (2018), Article ID 42, 17 pages.

  16. I. Cioranescu: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Mathematics and Its Applications 62, Kluwer Academic Publishers, Dordrecht, 1990.

    Google Scholar 

  17. P. L. Combettes: Iterative construction of the resolvent of a sum of maximal monotone operators. J. Convex Anal. 16 (2009), 727–748.

    MathSciNet  MATH  Google Scholar 

  18. P. L. Combettes, V. R. Wajs: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4 (2005), 1168–1200.

    Article  MathSciNet  MATH  Google Scholar 

  19. Q. Dong, D. Jiang, P. Cholamjiak, Y. Shehu: A strong convergence result involving an inertial forward-backward algorithm for monotone inclusions. J. Fixed Point Theory Appl. 19(2017), 3097–3118.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. C. Dunn: Convexity, monotonicity, and gradient processes in Hilbert space. J. Math. Anal. Appl. 55(1976), 145–158.

    Article  MathSciNet  MATH  Google Scholar 

  21. O. Güller. On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29 (1991), 403–419.

    Article  MathSciNet  Google Scholar 

  22. B. Halpern: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73 (1967), 957–961.

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. Haugazeau: Sur la minimisation des formes quadratiques avec contraintes. C.R. Acad. Sci., Paris, Sér. A 264 (1967), 322–324. (In French.)

    MathSciNet  MATH  Google Scholar 

  24. N. D. Kazarinoff. Analytic Inequalities. Holt, Rinehart and Winston, New York, 1961.

    MATH  Google Scholar 

  25. P.-L. Lions, B. Mercier. Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16 (1979), 964–979.

    Article  MathSciNet  MATH  Google Scholar 

  26. G. López, V. Martin-Márquez, F. Wang, H.-K. Xu: Forward-backward splitting methods for accretive operators in Banach spaces. Abstr. Appl. Anal. 2012 (2012), Article ID 109236, 25 pages.

  27. D. A. Lorenz, T. Pock: An inertial forward-backward algorithm for monotone inclusions. J. Math. Imaging Vis. 51 (2015), 311–325.

    Article  MathSciNet  MATH  Google Scholar 

  28. P.-E. Maingé: Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 325 (2007), 469–479.

    Article  MathSciNet  MATH  Google Scholar 

  29. B. Martinet: Régularisation d’inéquations variationnelles par approximations successives. Rev. Franc. Inform. Rech. Opér. 4 (1970), 154–158. (In French.)

    MATH  Google Scholar 

  30. A. Moudafi. M. Oliny: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 155 (2003), 447–454.

    Article  MathSciNet  MATH  Google Scholar 

  31. G. B. Passty: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72 (1979), 383–390.

    Article  MathSciNet  MATH  Google Scholar 

  32. J.-C Pesquet. N. Pustelnik: A parallel inertial proximal optimization method. Pac. J. Optim. 8 (2012), 273–306.

    MathSciNet  MATH  Google Scholar 

  33. B. T. Polyak: Some methods of speeding up the convergence of iterative methods. U.S.S.R. Comput. Math. Math. Phys. 4 (1967), 1–17; translation from Zh. Vychisl. Mat. Mat. Fiz. 4 (1964), 791–803.

    Article  Google Scholar 

  34. S. Reich: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75 (1980), 287–292.

    Article  MathSciNet  MATH  Google Scholar 

  35. R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14 (1976), 877–898.

    Article  MathSciNet  MATH  Google Scholar 

  36. Y. Shehu: Iterative approximations for zeros of sum of accretive operators in Banach spaces. J. Funct. Spaces 2016 (2016), Article ID 5973468, 9 pages.

  37. Y. Shehu. G. Cai: Strong convergence result of forward-backward splitting methods for accretive operators in Banach spaces with applications. Rev. R. Acad. Cienc. Exactas Fis. Nat., Ser. A Mat., RACSAM 112 (2018), 71–87.

    Article  MathSciNet  MATH  Google Scholar 

  38. S. Suantai, N. Pholasa. P. Cholamjiak: The modified inertial relaxed CQ algorithm for solving the split feasibility problems. J. Ind. Manag. Optim. 14 (2018), 1595–1615.

    MathSciNet  MATH  Google Scholar 

  39. P. Sunthrayuth, P. Cholamjiak. Iterative methods for solving quasi-variational inclusion and fixed point problem in q-uniformly smooth Banach spaces. Numer. Algorithms 78 (2018), 1019–1044.

    Article  MathSciNet  MATH  Google Scholar 

  40. P. Tseng: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38 (2000), 431–446.

    Article  MathSciNet  MATH  Google Scholar 

  41. L. Wei, R. P. Agarwal: A new iterative algorithm for the sum of infinite m-accretive mappings and infinite μi-inversely strongly accretive mappings and its applications to integro-differential systems. Fixed Point Theory Appl. 2016 (2016), Article ID 7, 22 pages.

  42. H.-K. Xu: Inequalities in Banach spaces with applications. Nonlinear Anal., Theory Methods Appl. 16 (1991), 1127–1138.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are sincerely grateful to the Editor and the anonymous reviewer for comments and suggestions which have improved the original manuscript greatly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yekini Shehu.

Additional information

P. Cholamjiak is supported by the Thailand Research Fund and the University of Phayao under grant RSA6180084. The research of the second author is supported by the Alexander von Humboldt-Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cholamjiak, P., Shehu, Y. Inertial forward-backward splitting method in Banach spaces with application to compressed sensing. Appl Math 64, 409–435 (2019). https://doi.org/10.21136/AM.2019.0323-18

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2019.0323-18

Keywords

MSC 2010

Navigation