Skip to main content
Log in

Some remarks on the Navier-Stokes equations with regularity in one direction

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We review the developments of the regularity criteria for the Navier-Stokes equations, and make some further improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Beirão da Veiga: A new regularity class for the Navier-Stokes equations in Rn. Chin. Ann. Math., Ser. B 16 (1995), 407–412.

    MATH  Google Scholar 

  2. C. Cao: Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete Contin. Dyn. Syst. 26 (2010), 1141–1151.

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Cao, E. S. Titi: Regularity criteria for the three-dimensional Navier-Stokes equations. Indiana Univ. Math. J. 57 (2008), 2643–2661.

    Article  MathSciNet  MATH  Google Scholar 

  4. J.-Y. Chemin, P. Zhang: On the critical one component regularity for 3-D Navier-Stokes systems. Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), 131–167.

    Article  MathSciNet  MATH  Google Scholar 

  5. J.-Y. Chemin, P. Zhang, Z. Zhang: On the critical one component regularity for 3-D Navier-Stokes system: general case. Arch. Ration. Mech. Anal. 224 (2017), 871–905.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Escauriaza, G.A. Serëgin, V. Šverák: L 3,∞-solutions of Navier-Stokes equations and backward uniqueness. Russ. Math. Surv. 58 (2003), 211–250; translation from Usp. Mat. Nauk 58 (2003), 3–44.

    Article  MATH  Google Scholar 

  7. Z. Guo, M. Caggio, Z. Skalák: Regularity criteria for the Navier-Stokes equations based on one component of velocity. Nonlinear Anal., Real World Appl. 35 (2017), 379–396.

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Hopf: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4 (1951), 213–231. (In German.)

    Article  MathSciNet  MATH  Google Scholar 

  9. X. Jia, Y. Zhou: Remarks on regularity criteria for the Navier-Stokes equations via one velocity component. Nonlinear Anal., Real World Appl. 15 (2014), 239–245.

    Article  MathSciNet  MATH  Google Scholar 

  10. I. Kukavica, M. Ziane: One component regularity for the Navier-Stokes equations. Nonlinearity 19 (2006), 453–469.

    Article  MathSciNet  MATH  Google Scholar 

  11. I. Kukavica, M. Ziane: Navier-Stokes equations with regularity in one direction. J. Math. Phys. 48 (2007), Article ID 065203, 10 pages.

    MathSciNet  MATH  Google Scholar 

  12. J. Leray: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63 (1934), 193–248. (In French.)

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Neustupa, A. Novotný, P. Penel: An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity. Topics in Mathematical Fluid Mechanics. Quad. Mat. 10, Aracne, Rome, 2002, pp. 163–183.

    MathSciNet  MATH  Google Scholar 

  14. P. Penel, M. Pokorný: Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity. Appl. Math., Praha 49 (2004), 483–493.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Penel, M. Pokorný: On anisotropic regularity criteria for the solutions to 3D Navier-Stokes equations. J. Math. Fluid Mech. 13 (2011), 341–353.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Pokorný: On the result of He concerning the smoothness of solutions to the Navier-Stokes equations. Electron. J. Differ. Equ. 2003 (2003), Article No. 11, 8 pages.

    MathSciNet  MATH  Google Scholar 

  17. G. Prodi: Un teorema di unicità per le equazioni di Navier-Stokes. Ann. Mat. Pura Appl. (4) 48 (1959), 173–182. (In Italian.)

    Article  MathSciNet  MATH  Google Scholar 

  18. J. C. Robinson, J. L. Rodrigo, W. Sadowski: The Three-Dimensional Navier-Stokes Equations. Classical Theory. Cambridge Studies in Advanced Mathematics 157, Cambridge University Press, Cambridge, 2016.

  19. J. Serrin: On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal. 9 (1962), 187–195.

    Article  MathSciNet  MATH  Google Scholar 

  20. Z. Skalák: On the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 104 (2014), 84–89.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Temam: Navier-Stokes Equations. Theory and Numerical Analysis. AMS Chelsea Publishing, Providence, 2001.

    Google Scholar 

  22. Z. Zhang: An almost Serrin-type regularity criterion for the Navier-Stokes equations involving the gradient of one velocity component. Z. Angew. Math. Phys. 66 (2015), 1707–1715.

    Article  MathSciNet  MATH  Google Scholar 

  23. Z. Zhang: An improved regularity criterion for the Navier-Stokes equations in terms of one directional derivative of the velocity field. Bull. Math. Sci. 8 (2018), 33–47.

    Article  MathSciNet  MATH  Google Scholar 

  24. Y. Zhou: A new regularity criterion for the Navier-Stokes equations in terms of the gradient of one velocity component. Methods Appl. Anal. 9 (2002), 563–578.

    MathSciNet  MATH  Google Scholar 

  25. Y. Zhou: A new regularity criterion for weak solutions to the Navier-Stokes equations. J. Math. Pures Appl. (9) 84 (2005), 1496–1514.

    Article  MathSciNet  MATH  Google Scholar 

  26. Y. Zhou, M. Pokorný: On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component. J. Math. Phys. 50 (2009), Article ID 123514, 11 pages.

    MathSciNet  MATH  Google Scholar 

  27. Y. Zhou, M. Pokorný: On the regularity of the solutions of the Navier-Stokes equations via one velocity component. Nonlinearity 23 (2010), 1097–1107.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zujin Zhang, Weijun Yuan or Yong Zhou.

Additional information

The research has been supported by the National Natural Science Foundation of China (grant no. 11761009).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Yuan, W. & Zhou, Y. Some remarks on the Navier-Stokes equations with regularity in one direction. Appl Math 64, 301–308 (2019). https://doi.org/10.21136/AM.2019.0264-18

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2019.0264-18

Keywords

MSC 2010

Navigation