Skip to main content
Log in

Reconstruction of Map Projection, its Inverse and Re-Projection

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

This paper focuses on the automatic recognition of map projection, its inverse and re-projection. Our analysis leads to the unconstrained optimization solved by the hybrid BFGS nonlinear least squares technique. The objective function is represented by the squared sum of the residuals. For the map re-projection the partial differential equations of the inverse transformation are derived. They can be applied to any map projection. Illustrative examples of the stereographic and globular Nicolosi projections frequently used in early maps are involved and their inverse formulas are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Al-Baali, R. Fletcher: Variational methods for non-linear least-squares. J. Oper. Res. Soc. 36 (1985), 405–421. zbl

    Article  MATH  Google Scholar 

  2. Á. Barancsuk: A semi-automatic approach for determining the projection of small scale maps based on the shape of graticule lines. Progress in Cartography. EuroCarto 2015 (G. Gartner, M. Jobst, H. Huang, eds.). Springer, Cham, 2016, pp. 267–288.

  3. T. Bayer: Estimation of an unknown cartographic projection and its parameters from the map. GeoInformatica 18 (2014), 621–669.

    Article  Google Scholar 

  4. T. Bayer: Advanced methods for the estimation of an unknown projection from a map. GeoInformatica 20 (2016), 241–284.

    Article  Google Scholar 

  5. T. Bayer: Detectproj—software for the projection analysis. Available at http://sourceforge.net/projects/detectproj/ (2017).

    Google Scholar 

  6. T. Bayer: Plotting the map projection graticule involving discontinuities based on combined sampling. Geoinformatics FCE CTU 17 (2018), 31–64.

    Article  Google Scholar 

  7. I. O. Bildirici: Numerical inverse transformation for map projections. Computers & Geosciences 29 (2003), 1003–1011.

    Article  Google Scholar 

  8. I. O. Bildirici: An iterative approach for inverse transformation of map projections. Cartography and Geographic Information Science 44 (2017), 463–471.

    Article  Google Scholar 

  9. G. I. Evenden: libproj4: A comprehensive library of cartographic projection functions. Falmouth, Massachusetts, 2005.

    Google Scholar 

  10. W. Flacke, B. Kraus: Working with Projections and Datum Transformations in ArcGIS: Theory and Practical Examples. Points Verlag, Norden, 2005.

    Google Scholar 

  11. R. Fletcher, C. Xu: Hybrid methods for nonlinear least squares. IMA J. Numer. Anal. 7 (1987), 371–389.

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Harrison, A. Mahdavi-Amiri, F. Samavati: Optimization of inverse Snyder polyhedral projection. Cyberworlds (CW), 2011 International Conference on Cyberworlds. IEEE, 2011, pp. 136–143.

    Google Scholar 

  13. J. Huschens: On the use of product structure in secant methods for nonlinear least squares problems. SIAM J. Optim. 4 (1994), 108–129.

    Article  MathSciNet  MATH  Google Scholar 

  14. C. Ipbüker: Inverse transformation for several pseudo-cylindrical map projections using Jacobian matrix. International Conference on Computational Science and Its Applications (O. Gervasi et al., eds.). Springer, Berlin, 2009, pp. 553–564.

  15. C. Ipbüker, I. Bildirici: A general algorithm for the inverse transformation of map projections using jacobian matrices. Proceedings of the Third International Symposium Mathematical & Computational Applications 2002. Konya, Turkey, 2002, pp. 175–182.

    Google Scholar 

  16. B. Jenny: Map Analyst. Available at http://mapanalyst.org, 2011.

    Google Scholar 

  17. M. Lapaine: Mollweide map projection. KoG 15 (2011), 7–16.

    MathSciNet  MATH  Google Scholar 

  18. L. Lukšan: Computational experience with known variable metric updates. J. Optimization Theory Appl. 83 (1994), 27–47.

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Lukšan: Hybrid methods for large sparse nonlinear least squares. J. Optimization Theory Appl. 89 (1996), 575–595.

    Article  MathSciNet  MATH  Google Scholar 

  20. L. Lukšan, E. Spedicato: Variable metric methods for unconstrained optimization and nonlinear least squares. J. Comput. Appl. Math. 124 (2000), 61–95.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. A. Ratner: An implementation of the Robinson map projection based on cubic splines. Cartography and Geographic Information Systems 18 (1991), 104–108.

    Article  Google Scholar 

  22. B. Šavrič, B. Jenny: A new pseudocylindrical equal-area projection for adaptive composite map projections. International Journal of Geographical Information Science 28 (2014), 2373–2389.

    Article  Google Scholar 

  23. W. M. Smart, R. M. Green: Textbook on Spherical Astronomy. Cambridge University Press, Cambridge, 1977.

    Book  Google Scholar 

  24. J. P. Snyder: Map Projections Used by the US Geological Survey. Technical report, US Government Printing Office, Washington, 1982.

    Google Scholar 

  25. J. P. Snyder: Map projections: A working manual. US Government Printing Office, Washington, 1987.

    Google Scholar 

  26. W. R. Tobler: Medieval distortions: The projections of ancient maps. Annals of the Association of American Geographers 56 (1966), 351–360.

    Article  Google Scholar 

  27. W. R. Tobler: Numerical approaches to map projections. Beitrage zur theoretischen Kartographie, Festschrift für Erik Amberger, hg. Ingrid Kretschmer. Franz Deuticke, Wien, 1977, pp. 51–64.

    Google Scholar 

  28. W. R. Tobler: Measuring the similarity of map projections. The American Cartographer 13 (1986), 135–139.

    Article  Google Scholar 

  29. H. Yabe, T. Takahashi: Factorized quasi-Newton methods for nonlinear least squares problems. Math. Program., Ser. A 51 (1991), 75–100.

    Article  MathSciNet  MATH  Google Scholar 

  30. Q. H. Yang, J. P. Snyder, W. R. Tobler: Map Projection Transformation. Principles and Applications. Taylor & Francis, London, 2000.

    MATH  Google Scholar 

  31. W. Zhou, X. Chen: Global convergence of a new hybrid Gauss-Newton structured BFGS method for nonlinear least squares problems. SIAM J. Optim. 20 (2010), 2422–2441.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Bayer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayer, T., Kočandrlová, M. Reconstruction of Map Projection, its Inverse and Re-Projection. Appl Math 63, 455–481 (2018). https://doi.org/10.21136/AM.2018.0096-18

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2018.0096-18

Keywords

MSC 2010

Navigation