Advertisement

Applications of Mathematics

, Volume 63, Issue 3, pp 367–379 | Cite as

Explicit Finite Element Error Estimates for Nonhomogeneous Neumann Problems

  • Qin Li
  • Xuefeng Liu
Article

Abstract

The paper develops an explicit a priori error estimate for finite element solution to nonhomogeneous Neumann problems. For this purpose, the hypercircle over finite element spaces is constructed and the explicit upper bound of the constant in the trace theorem is given. Numerical examples are shown in the final section, which implies the proposed error estimate has the convergence rate as 0.5.

Keywords

finite element methods nonhomogeneous Neumann problems explicit error estimates 

MSC 2010

65N15 65N30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Ainsworth, T. Vejchodský: Fully computable robust a posteriori error bounds for singularly perturbed reaction-diffusion problems. Numer. Math. 119 (2011), 219–243.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    M. Ainsworth, T. Vejchodský: Robust error bounds for finite element approximation of reaction-diffusion problems with non-constant reaction coefficient in arbitrary space dimension. Comput. Methods Appl. Mech. Eng. 281 (2014), 184–199.MathSciNetCrossRefGoogle Scholar
  3. [3]
    I. Babuška, J. Osborn: Eigenvalue problems. Handbook of Numerical Analysis, Volume II: Finite Element Methods (Part 1) (P. G. Ciarlet, J. L. Lions, eds. ). North-Holland, Amsterdam, 1991, pp. 641–787.Google Scholar
  4. [4]
    A. Bermúdez, R. Rodríguez, D. Santamarina: A finite element solution of an added mass formulation for coupled fluid-solid vibrations. Numer. Math. 87 (2000), 201–227.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    D. Braess: Finite Elements. Theory, Fast Solvers and Applications in Solid Mechanics. Cambridge University Press, Cambridge, 2007.CrossRefzbMATHGoogle Scholar
  6. [6]
    J. H. Bramble, J. E. Osborn: Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators. Mathematical Foundations of the Finite Element Method with Applications to PDE (A. K. Aziz, ed. ). Academic Press, New York, 1972, pp. 387–408.Google Scholar
  7. [7]
    F. Brezzi, M. Fortin: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics 15, Springer, New York, 1991.CrossRefzbMATHGoogle Scholar
  8. [8]
    D. Bucur, I. R. Ionescu: Asymptotic analysis and scaling of friction parameters. Z. Angew. Math. Phys. 57 (2006), 1042–1056.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    P. Grisvard: Elliptic Problems for Nonsmooth Domains. Monographs and Studies in Mathematics 24, Pitman, Boston, 1985.zbMATHGoogle Scholar
  10. [10]
    F. Kikuchi, H. Saito: Remarks on a posteriori error estimation for finite element solutions. J. Comput. Appl. Math. 199 (2007), 329–336.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    K. Kobayashi: On the interpolation constants over triangular elements. Proceedings of the International Conference Applications of Mathematics 2015 (J. Brandts et al., eds. ). Czech Academy of Sciences, Institute of Mathematics, Praha, 2015, pp. 110–124.Google Scholar
  12. [12]
    R. S. Laugesen, B. A. Siudeja: Minimizing Neumann fundamental tones of triangles: an optimal Poincaré inequality. J. Differ. Equations 249 (2010), 118–135.CrossRefzbMATHGoogle Scholar
  13. [13]
    Q. Li, Q. Lin, H. Xie: Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations. Appl. Math., Praha 58 (2013), 129–151.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    X. Liu: A framework of verified eigenvalue bounds for self-adjoint differential operators. Appl. Math. Comput. 267 (2015), 341–355.MathSciNetGoogle Scholar
  15. [15]
    X. Liu, F. Kikuchi: Analysis and estimation of error constants for P0 and P1 interpolations over triangular finite elements. J. Math. Sci., Tokyo 17 (2010), 27–78.zbMATHGoogle Scholar
  16. [16]
    X. Liu, S. Oishi: Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape. SIAM J. Numer. Anal. 51 (2013), 1634–1654.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    I. Šebestová, T. Vejchodský: Two-sided bounds for eigenvalues of differential operators with applications to Friedrichs, Poincaré, trace, and similar constants. SIAM J. Numer. Anal. 52 (2014), 308–329.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    A. Takayasu, X. Liu, S. Oishi: Verified computations to semilinear elliptic boundary value problems on arbitrary polygonal domains. Nonlinear Theory and Its Applications 4 (2013), 34–61.CrossRefGoogle Scholar
  19. [19]
    Y. Yang, Q. Li, S. Li: Nonconforming finite element approximations of the Steklov eigenvalue problem. Appl. Numer. Math. 59 (2009), 2388–2401.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2018

Authors and Affiliations

  1. 1.School of ScienceBeijing Technology and Business UniversityBeijingP.R. China
  2. 2.Graduate School of Science and TechnologyNiigata UniversityNiigata City, NiigataJapan

Personalised recommendations