Skip to main content
Log in

A new weighted Gompertz distribution with applications to reliability data

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

A new weighted version of the Gompertz distribution is introduced. It is noted that the model represents a mixture of classical Gompertz and second upper record value of Gompertz densities, and using a certain transformation it gives a new version of the two-parameter Lindley distribution. The model can be also regarded as a dual member of the log-Lindley-X family. Various properties of the model are obtained, including hazard rate function, moments, moment generating function, quantile function, skewness, kurtosis, conditional moments, mean deviations, some types of entropy, mean residual lifetime and stochastic orderings. Estimation of the model parameters is justified by the method of maximum likelihood. Two real data sets are used to assess the performance of the model among some classical and recent distributions based on some evaluation goodness-of-fit statistics. As a result, the variance-covariance matrix and the confidence interval of the parameters, and some theoretical measures have been calculated for such data for the proposed model with discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. K. Al-Mutairi, M. E. Ghitany, D. Kundu: Inferences on stress-strength reliability from Lindley distributions. Commun. Stat., Theory Methods 42 (2013), 1443–1463.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Alzaghal, F. Famoye, C. Lee: Exponentiated T-X family of distributions with some applications. Int. J. Stat. Probab. 2 (2013), 31–49.

    Article  Google Scholar 

  3. A. Asgharzadeh, H. S. Bakouch, S. Nadarajah, F. Sharafi: A new weighted Lindley distribution with application. Braz. J. Probab. Stat. 30 (2016), 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. S. Bakouch, M. A. Jazi, S. Nadarajah, A. Dolati, R. Roozegar: A lifetime model with increasing failure rate. Appl. Math. Model. 38 (2014), 5392–5406.

    Article  MathSciNet  Google Scholar 

  5. A. C. Bemmaor: Modeling the diffusion of new durable goods: word-of-mouth effect versus consumer heterogeneity. Research Traditions in Marketing (G. Laurent, G. L. Lilien, B. Pras, eds.). Int. Ser. in Quantitative Marketing 5, Kluwer, Boston, 1994, pp. 201–223.

    Google Scholar 

  6. A. El-Gohary, A. Alshamrani, A. N. Al-Otaibi: The generalized Gompertz distribution. Appl. Math. Modelling 37 (2013), 13–24.

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Galton: Inquiries into Human Faculty and Its Development, MacMillan & Company, London, 1883.

    Book  Google Scholar 

  8. M. E. Ghitany, F. Alqallaf, D. K. Al-Mutairi, H. A. Husain: A two-parameter weighted Lindley distribution and its applications to survival data. Math. Comput. Simul. 81 (2011), 1190–1201.

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Gómez-Déniz, M. A. Sordo, E. Calderín-Ojeda: The Log-Lindley distribution as an alternative to the beta regression model with applications in insurance. Insur. Math. Econ. 54 (2014), 49–57.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. L. Guisado, F. Jiménez-Morales, J. M. Guerra: Application of Shannon’s entropy to classify emergent behaviors in a simulation of laser dynamics. Math. Comput. Modelling 42 (2005), 847–854.

    Article  MATH  Google Scholar 

  11. R. C. Gupta, S. N. U. A. Kirmani: Residual coefficient of variation and some characterization results. J. Stat. Plann. Inference 91 (2000), 23–31.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. D. Gupta, D. Kundu: A new class of weighted exponential distributions. Statistics 43 (2009), 621–634.

    Article  MathSciNet  MATH  Google Scholar 

  13. K. Jain, H. Singh, I. Bagai: Relations for reliability measures of weighted distributions. Commun. Stat., Theory Methods 18 (1989), 4393–4412.

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Jain, N. Singla, R. D. Gupta: A weighted version of gamma distribution. Discuss. Math., Probab. Stat. 34 (2014), 89–111.

    Article  MathSciNet  MATH  Google Scholar 

  15. H. F. Jelinek, M. P. Tarvainen, D. J. Cornforth: Rényi entropy in identification of cardiac autonomic neuropathy in diabetes. Proceedings of the 39th Conference on Computing in Cardiology. Institute of Electrical and Electronics Engineers, 2012, pp. 909–911.

    Google Scholar 

  16. F. Jiménez: Estimation of parameters of the shifted Gompertz distribution using least squares, maximum likelihood and moments methods. J. Comput. Appl. Math. 255 (2014), 867–877.

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Jiménez, P. Jodrá: A note on the moments and computer generation of the shifted Gompertz distribution. Commun. Stat., Theory Methods 38 (2009), 75–89.

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Jodrá: Computer generation of random variables with Lindley or Poisson-Lindley distribution via the Lambert W function. Math. Comput. Simul. 81 (2010), 851–859.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Lappi, R. L. Bailey: Estimation of the diameter increment function or other tree relations using angle-count samples. Forest Science 33 (1987), 725–739.

    Google Scholar 

  20. S. Magnussen, P. Eggermont, V. N. LaRiccia: Recovering tree heights from airborne laser scanner data. Forest Science 45 (1999), 407–422.

    Google Scholar 

  21. W. M. Makeham: On the law of mortality and construction of annuity tables. J. Inst. Actuar. Assur. Mag. 8 (1860), 301–310.

    Article  Google Scholar 

  22. A. Marshall, I. Olkin: Life Distributions. Structure of Nonparametric, Semiparametric, and Parametric Families. Springer Series in Statistics, Springer, New York, 2007.

    Google Scholar 

  23. A. M. Mathai, H. J. Haubold: On generalized distributions and pathways. Phys. Lett., A 372 (2008), 2109–2133.

    Article  MATH  Google Scholar 

  24. T. I. Missov, A. Lenart: Linking period and cohort life-expectancy linear increases in Gompertz proportional hazards models. Demographic Research 24 (2011), 455–468.

    Article  Google Scholar 

  25. J. J. Moors: A quantile alternative for kurtosis. J. R. Stat. Soc., Ser. D 37 (1988), 25–32.

    Google Scholar 

  26. J. E. Muth: Reliability models with positive memory derived from the mean residual life function. Theory and Applications of Reliability 2 (1977), 401–436.

    Google Scholar 

  27. S. Nadarajah, H. S. Bakouch, R. Tahmasbi: A generalized Lindley distribution. Sankhyā, Ser. B. 73 (2011), 331–359.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. D. Nichols, W. J. Padgett: A bootstrap control chart for Weibull percentiles. Quality and Reliability Engineering International 22 (2006), 141–151.

    Article  Google Scholar 

  29. G. P. Patil, C. R. Rao: Weighted distributions and size-biased sampling with applications to wildlife populations and human families. Biometrics 34 (1978), 179–189.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. H. Pollard, E. J. Valkovics: The Gompertz distribution and its applications. Genus 48 (1992), 15–28.

    Google Scholar 

  31. A. Rényi: On measures of entropy and information. Proc. 4th Berkeley Symp. Math. Stat. Probab., Vol. I. Univ. California Press, Berkeley, 1961, pp. 547–561.

    Google Scholar 

  32. M. Shaked, J. G. Shanthikumar: Stochastic Orders and Their Applications. Probability and Mathematical Statistics, Academic Press, Boston, 1994.

    Google Scholar 

  33. R. Shanker, S. Sharma, R. Shanker: A two-parameter Lindley distribution for modeling waiting and survival times data. Applied Mathematics 4 (2013), 363–368.

    Article  Google Scholar 

  34. C. E. Shannon: A mathematical theory of communication. Bell. Syst. Tech. J. 27 (1948), 379–423, 623–656.

    Article  MathSciNet  MATH  Google Scholar 

  35. S. N. Singh, S. B. Tiwari: An application of generalized entropy in queueing theory. Journal of Applied Science and Engineering 16 (2013), 99–103.

    Google Scholar 

  36. R. L. Smith, J. C. Naylor: A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution. J. Roy. Statist. Soc. Ser. C 36 (1987), 358–369.

    MathSciNet  Google Scholar 

  37. V. Sucic, N. Saulig, B. Boashash: Estimating the number of components of a multicomponent nonstationary signal using the short-term time-frequency Rényi entropy. EURASIP J. Adv. Signal Process. 125 (2011), 1–11.

    Google Scholar 

  38. W. G. Warren: Statistical distributions in forestry and forest products research. Modern Course on Statistical Distributions in Scientific Work, Vol. 2. NATO Advanced Study Institutes Series, Vol. 17, D. Reidel Publishing Company, Dordrecht, 1975, pp. 369–384.

    Chapter  Google Scholar 

  39. F. Willekens: Gompertz in context: the Gompertz and related distributions. Forecasting Mortality in Developed Countries: Insights from a Statistical, Demographic and Epidemiological Perspective. European Studies of Population Vol. 9, Springer, 2001, pp. 105–126.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan S. Bakouch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakouch, H.S., Abd El-Bar, A.M.T. A new weighted Gompertz distribution with applications to reliability data. Appl Math 62, 269–296 (2017). https://doi.org/10.21136/AM.2017.0277-16

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2017.0277-16

Keywords

MSC 2010

Navigation