Applications of Mathematics

, Volume 62, Issue 2, pp 135–169 | Cite as

Time discretizations for evolution problems

  • Miloslav Vlasák


The aim of this work is to give an introductory survey on time discretizations for liner parabolic problems. The theory of stability for stiff ordinary differential equations is explained on this problem and applied to Runge-Kutta and multi-step discretizations. Moreover, a natural connection between Galerkin time discretizations and Runge-Kutta methods together with order reduction phenomenon is discussed.


time discretizations parabolic PDEs stiff ODEs Runge-Kutta methods multi-step methods 

MSC 2010

65J10 65L04 65L20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Akrivis, C. Makridakis, R. H. Nochetto: Galerkin and Runge-Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence. Numer. Math. 118 (2011), 429–456.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    R. Alexander: Diagonally implicit Runge-Kutta methods for stiff O. D. E.’s. SIAM J. Numer. Anal. 14 (1977), 1006–1021.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    D. Boffi: Finite element approximation of eigenvalue problems. Acta Numer. 19 (2010), 1–120.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    P. Brenner, M. Crouzeix, V. Thomée: Single-step methods for inhomogeneous linear differential equations in Banach space. RAIRO, Anal. Numér. 16 (1982), 5–26.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J. C. Butcher: Implicit Runge-Kutta processes. Math. Comput. 18 (1964), 50–64.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    E. A. Coddington, N. Levinson: Theory of Ordinary Differential Equations. McGraw-Hill Book Company, New York, 1955.zbMATHGoogle Scholar
  7. [7]
    M. Crouzeix, W. H. Hundsdorfer, M. N. Spijker: On the existence of solutions to the algebraic equations in implicit Runge-Kutta methods. BIT 23 (1983), 84–91.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    M. Crouzeix, F. J. Lisbona: The convergence of variable-stepsize, variable-formula, multistep methods. SIAM J. Numer. Anal. 21 (1984), 512–534.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    M. Crouzeix, P.-A. Raviart: Approximation des équations d’évolution linéaires par des méthodes à pas multiples. C. R. Acad. Sci., Paris, Sér. A 283 (1976), 367–370. ízbMATHGoogle Scholar
  10. [10]
    C. F. Curtiss, J. O. Hirschfelder: Integration of stiff equations. Proc. Natl. Acad. Sci. USA 38 (1952), 235–243.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    G. Dahlquist: Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand. 4 (1956), 33–53.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    K. Dekker: On the iteration error in algebraically stable Runge-Kutta methods. Report NW 138/82, Math. Centrum, Amsterdam, 1982.Google Scholar
  13. [13]
    V. Dolejší, M. Feistauer: Discontinuous Galerkin Method. Analysis and Applications to Compressible Flow. Springer Series in Computational Mathematics 48, Springer, Cham, 2015.CrossRefzbMATHGoogle Scholar
  14. [14]
    B. L. Ehle: On Padé approximations to the exponential function and A-stable methods for the numerical solution of initial value problems. Thesis (Ph. D)-University of Waterloo, Ontario, 1969.Google Scholar
  15. [15]
    R. Frank, J. Schneid, C. W. Ueberhuber: Order results for implicit Runge-Kutta methods applied to stiff systems. SIAM J. Numer. Anal. 22 (1985), 515–534.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    C. W. Gear: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, Englewood Cliffs, 1971.zbMATHGoogle Scholar
  17. [17]
    C. W. Gear, K. W. Tu: The effect of variable mesh size on the stability of multistep methods. SIAM J. Numer. Anal. 11 (1974), 1025–1043.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    R. D. Grigorieff: Stability of multistep-methods on variable grids. Numer. Math. 42 (1983), 359–377.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    R. D. Grigorieff, H. J. Pfeiffer: Numerik gewöhnlicher Differentialgleichungen. Band 2: Mehrschrittverfahren. Teubner Studienbücher: Mathematik. B. G. Teubner, Stuttgart, 1977.CrossRefzbMATHGoogle Scholar
  20. [20]
    A. Guillou, J. L. Soulé: La résolution numérique des problèmes différentiels aux conditions initiales par des méthodes de collocation. Rev. Franç. Inform. Rech. Opér. 3 (1969), 17–44.zbMATHGoogle Scholar
  21. [21]
    E. Hairer, S. P. Nørsett, G. Wanner: Solving Ordinary Differential Equations. I: Nonstiff Problems. Springer Series in Computational Mathematics 8, Springer, Berlin, 1993.zbMATHGoogle Scholar
  22. [22]
    E. Hairer, G. Wanner: Solving Ordinary Differential Equations. II: Stiff and DifferentialAlgebraic Problems. Springer Series in Computational Mathematics 14, Springer, Berlin, 1996.CrossRefzbMATHGoogle Scholar
  23. [23]
    P. Henrici: Discrete Variable Methods in Ordinary Differential Equations. John Wiley and Sons, New York, 1962.zbMATHGoogle Scholar
  24. [24]
    M. Hochbruck, A. Ostermann: Exponential integrators. Acta Numerica 19 (2010), 209–286.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    B. L. Hulme: One-step piecewise polynomial Galerkin methods for initial value problems. Math. Comput. 26 (1972), 415–426.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    J. Kuntzmann: Neuere Entwicklungen der Methode von Runge und Kutta. Z. Angew. Math. Mech. 41 (1961), T28–T31.zbMATHGoogle Scholar
  27. [27]
    C. Lubich: On the convergence of multistep methods for nonlinear stiff differential equations. Numer. Math. 58 (1991), 839–853.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    H. Padé: Sur la représentation approchée d’une fonction par des fractions rationnelles. Ann. Sci. éc. Norm. Supér. (3) 9 (1892), 3–93.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    A. Prothero, A. Robinson: On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations. Math. Comput. 28 (1974), 145–162.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    K. Rektorys: The Method of Discretization in Time and Partial Differential Equations. Mathematics and Its Applications (East European Series) 4, D. Reidel Publishing, Dordrecht; SNTL-Publishers of Technical Literature, Praha, 1982.zbMATHGoogle Scholar
  31. [31]
    F. Roskovec: Numerical solution of nonlinear convection-diffusion problems by adaptive methods. Master Thesis, 2014. (In Czech. )Google Scholar
  32. [32]
    E. F. Toro: Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction, Springer, Berlin. 1999.CrossRefzbMATHGoogle Scholar
  33. [33]
    M. Vlasák, V. Dolejší, J. Hájek: A priori error estimates of an extrapolated space-time discontinuous Galerkin method for nonlinear convection-diffusion problems. Numer. Methods Partial Differ. Equations 27 (2011), 1456–1482.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    M. Vlasák, Z. Vlasáková: Derivation of BDF coefficients for equidistant time step. Programs and Algorithms of Numerical Mathematics 15. Proc. Seminar, Dolní Maxov, Academy of Sciences of the Czech Republic, Institute of Mathematics, Praha, 2010, pp. 221–226.Google Scholar
  35. [35]
    J. von Neumann: Eine Spektraltheorie für allgemeine Operatoren eines unitä ren Raumes. Math. Nachr. 4 (1951), 258–281.MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    O. B. Widlund: A note on unconditionally stable linear multistep methods. BIT, Nord. Tidskr. Inf. -behandl. 7 (1967), 65–70.MathSciNetzbMATHGoogle Scholar
  37. [37]
    K. Wright: Some relationships between implicit Runge-Kutta, collocation Lanczos τ methods, and their stability properties. BIT, Nord. Tidskr. Inf. -behandl. 10 (1970), 217–227.MathSciNetzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2017

Authors and Affiliations

  1. 1.Department of Mathematical AnalysisCharles University, Faculty of Mathematics and PhysicsPraha 8Czech Republic

Personalised recommendations