Skip to main content
Log in

Nonconforming P1 elements on distorted triangulations: Lower bounds for the discrete energy norm error

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

Compared to conforming P1 finite elements, nonconforming P1 finite element discretizations are thought to be less sensitive to the appearance of distorted triangulations. E.g., optimal-order discrete H1 norm best approximation error estimates for H2 functions hold for arbitrary triangulations. However, the constants in similar estimates for the error of the Galerkin projection for second-order elliptic problems show a dependence on the maximum angle of all triangles in the triangulation. We demonstrate on an example of a special family of distorted triangulations that this dependence is essential, and due to the deterioration of the consistency error. We also provide examples of sequences of triangulations such that the nonconforming P1 Galerkin projections for a Poisson problem with polynomial solution do not converge or converge at arbitrarily low speed. The results complement analogous findings for conforming P1 finite elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Acosta, R. G. Durán: The maximum angle condition for mixed and nonconforming elements: Application to the Stokes equations. SIAM J. Numer. Anal. 37 (1999), 18–36.

    Article  MathSciNet  MATH  Google Scholar 

  2. I. Babuška, A. K. Aziz: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976), 214–226.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Braess: Finite Elements. Theory, Fast Solvers and Applications in Solid Mechanics. Cambridge University Press, Cambridge, 2007.

    Google Scholar 

  4. D. Braess: An a posteriori error estimate and a comparison theorem for the nonconforming P1 element. Calcolo 46 (2009), 149–155.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. C. Brenner: Poincaré-Friedrichs inequalities for piecewise H1 functions. SIAM J. Numer. Anal. 41 (2003), 306–324.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. C. Brenner, L. R. Scott: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics 15, Springer, New York, 2008.

    Google Scholar 

  7. C. Carstensen, J. Gedicke, D. Rim: Explicit error estimates for Courant, Crouzeix-Raviart and Raviart-Thomas finite element methods. J. Comput. Math. 30 (2012), 337–353.

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Carstensen, D. Peterseim, M. Schedensack: Comparison results of finite element methods for the Poisson model problem. SIAM J. Numer. Anal. 50 (2012), 2803–2823.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Crouzeix, P.-A. Raviart: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. Rev. Franc. Automat. Inform. Rech. Operat. 7 (1973), 33–76.

    MathSciNet  MATH  Google Scholar 

  10. A. Hannukainen, S. Korotov, M. Křížek: The maximum angle condition is not necessary for convergence of the finite element method. Numer. Math. 120 (2012), 79–88.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Jamet: Estimations d’erreur pour des éléments finis droits presque dégénérés. Rev. Franc. Automat. Inform. Rech. Operat. 10, Analyse Numer. 10 (1976), 43–60.

    MATH  Google Scholar 

  12. V. Kučera: On necessary and sufficient conditions for finite element convergence. arXiv: 1601.02942 (2016).

    Google Scholar 

  13. L. D. Marini: An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method. SIAM J. Numer. Anal. 22 (1985), 493–496.

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Oswald: Divergence of FEM: Babuška-Aziz triangulatiuons revisited. Appl. Math., Praha 60 (2015), 473–484.

    Article  MATH  Google Scholar 

  15. P.-A. Raviart, J. M. Thomas: A mixed finite element method for 2nd order elliptic problems. Mathematical Aspects of Finite Element Method (I. Galligani, E. Magenes, eds.). Proc. Conf., Rome, 1975, Lect. Notes Math. 606, Springer, New York, 1977, pp. 292–315.

    Chapter  Google Scholar 

  16. H. A. Schwarz: Sur une définition erroneé de l’aire d’une surface courbe, Gesammelte Mathematische Abhandlungen 2. Springer, Berlin, 1890, pp. 309–311, 369–370.

    Book  Google Scholar 

  17. M. Vohralík: On the discrete Poincaré-Friedrichs inequalities for nonconforming approximations of the Sobolev space H1. Numer. Funct. Anal. Optimization 26 (2005), 925–952.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Oswald.

Additional information

The work was triggered by a question by C. Carstensen after a talk given by the author at the 2016 European Finite Element Fair about the results from [14].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oswald, P. Nonconforming P1 elements on distorted triangulations: Lower bounds for the discrete energy norm error. Appl Math 62, 433–457 (2017). https://doi.org/10.21136/AM.2017.0150-17

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2017.0150-17

Keywords

MSC 2010

Navigation