Applications of Mathematics

, Volume 62, Issue 3, pp 243–267

A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems

Article

Abstract

We derive a residual-based a posteriori error estimator for a discontinuous Galerkin approximation of the Steklov eigenvalue problem. Moreover, we prove the reliability and efficiency of the error estimator. Numerical results are provided to verify our theoretical findings.

Keywords

discontinuous Galerkin method Steklov eigenvalue problem a posteriori error estimate 

MSC 2010

65N15 65N25 65N30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. J. Ahn: Vibrations of a pendulum consisting of a bob suspended from a wire: the method of integral equations. Q. Appl. Math. 39 (1981), 109–117.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    M. Ainsworth: A posteriori error estimation for discontinuous Galerkin finite element approximation. SIAM J. Numer. Anal. 45 (2007), 1777–1798.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    M. Ainsworth, R. Rankin: Fully computable error bounds for discontinuous Galerkin finite element approximations on meshes with an arbitrary number of levels of hanging nodes. SIAM J. Numer. Anal. 47 (2010), 4112–4141.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    A. Alonso, A. D. Russo: Spectral approximation of variationally-posed eigenvalue problems by nonconforming methods. J. Comput. Appl. Math. 223 (2009), 177–197.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    A. B. Andreev, T. D. Todorov: Isoparametric finite-element approximation of a Steklov eigenvalue problem. IMA J. Numer. Anal. 24 (2004), 309–322.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    P. F. Antonietti, A. Buffa, I. Perugia: Discontinuous Galerkin approximation of the Laplace eigenproblem. Comput. Methods Appl. Mech. Eng. 195 (2006), 3483–3503.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    M. G. Armentano: The effect of reduced integration in the Steklov eigenvalue problem. M2AN, Math. Model. Numer. Anal. 38 (2004), 27–36.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    M. G. Armentano, C. Padra: A posteriori error estimates for the Steklov eigenvalue problem. Appl. Numer. Math. 58 (2008), 593–601.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002), 1749–1779.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    I. Babuška, J. Osborn: Eigenvalue problems. Handbook of Numerical Analysis. Volume II: Finite Element Methods (Part 1) (P. G. Ciarlet et al., eds.). North-Holland, Amsterdam, 1991, pp. 641–787.Google Scholar
  11. [11]
    R. Becker, P. Hansbo, M. G. Larson: Energy norm a posteriori error estimation for discontinuous Galerkin methods. Comput. Methods Appl. Mech. Eng. 192 (2003), 723–733.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    S. Bergman, M. Schiffer: Kernel Functions and Elliptic Differential Equations in Mathematical Physics. Pure and Applied Mathematics 4, Academic Press, New York, 1953.Google Scholar
  13. [13]
    A. Bermúdez, R. Rodríguez, D. Santamarina: A finite element solution of an added mass formulation for coupled fluid-solid vibrations. Numer. Math. 87 (2000), 201–227.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    H. Bi, H. Li, Y. Yang: An adaptive algorithm based on the shifted inverse iteration for the Steklov eigenvalue problem. Appl. Numer. Math. 105 (2016), 64–81.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    A. Bonito, R. H. Nochetto: Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method. SIAM J. Numer. Anal. 48 (2010), 734–771.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    D. Braess, T. Fraunholz, R. H. W. Hoppe: An equilibrated a posteriori error estimator for the interior penalty discontinuous Galerkin method. SIAM J. Numer. Anal. 52 (2014), 2121–2136.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    J. H. Bramble, J. E. Osborn: Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. Proc. Sympos. Univ. Maryland, Baltimore, 1972, Academic Press, New York, 1972, pp. 387–408.CrossRefGoogle Scholar
  18. [18]
    S. C. Brenner: Poincaré-Friedrichs inequalities for piecewise H 1 functions. SIAM J. Numer. Anal. 41 (2003), 306–324.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    L. Chen, C. Zhang: AFEM@matlab: a Matlab package of adaptive finite element methods, Technical report, University of Maryland at College Park, 2006.Google Scholar
  20. [20]
    P. Clément: Approximation by finite element functions using local regularization. Rev. Franc. Automat. Inform. Rech. Operat. 9, Analyse numer., No. R-2 (1975), 77–84.MathSciNetMATHGoogle Scholar
  21. [21]
    C. Conca, J. Planchard, M. Vanninathan: Fluids and Periodic Structures. Research in Applied Mathematics, Wiley, Chichester; Masson, Paris, 1995.Google Scholar
  22. [22]
    V. Dolejší, I. Šebestová, M. Vohralík: Algebraic and discretization error estimation by equilibrated fluxes for discontinuous Galerkin methods on nonmatching grids. J. Sci. Comput. 64 (2015), 1–34.MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    W. Dörfler: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996), 1106–1124.MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    A. Ern, J. Proft: A posteriori discontinuous Galerkin error estimates for transient convectiondiffusion equations. Appl. Math. Lett. 18 (2005), 833–841.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    E. M. Garau, P. Morin: Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems. IMA J. Numer. Anal. 31 (2011), 914–946.MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    S. Giani, E. J. C. Hall: An a posteriori error estimator for hp-adaptive discontinuous Galerkin methods for elliptic eigenvalue problems. Math. Models Methods Appl. Sci. 22 (2012), 1250030, 35 pages.MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    X. Han, Y. Li, H. Xie: A multilevel correction method for Steklov eigenvalue problem by nonconforming finite element methods. Numer. Math. Theory Methods Appl. 8 (2015), 383–405.MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    D. B. Hinton, J. K. Shaw: Differential operators with spectral parameter incompletely in the boundary conditions. Funkc. Ekvacioj, Ser. Int. 33 (1990), 363–385.MathSciNetMATHGoogle Scholar
  29. [29]
    R. H. W. Hoppe, G. Kanschat, T. Warburton: Convergence analysis of an adaptive interior penalty discontinuous Galerkin method. SIAM J. Numer. Anal. 47 (2008), 534–550.MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    P. Houston, I. Perugia, D. Schötzau: An a posteriori error indicator for discontinuous Galerkin discretizations of H(curl)-elliptic partial differential equations. IMA J. Numer. Anal. 27 (2007), 122–150.MathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    P. Houston, D. Schötzau, T. P. Wihler: Energy norm a posteriori error estimation of hp-adaptive discontinuous Galerkin methods for elliptic problems. Math. Models Methods Appl. Sci. 17 (2007), 33–62.MathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    O. A. Karakashian, F. Pascal: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41 (2003), 2374–2399.MathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    O. A. Karakashian, F. Pascal: Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems. SIAM J. Numer. Anal. 45 (2007), 641–665.MathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    Q. Li, Q. Lin, H. Xie: Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations. Appl. Math., Praha 58 (2013), 129–151.MathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    Q. Li, Y. Yang: A two-grid discretization scheme for the Steklov eigenvalue problem. J. Appl. Math. Comput. 36 (2011), 129–139.MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    Q. Lin, H. Xie: A multilevel correction type of adaptive finite element method for Steklov eigenvalue problems. Proceedings of the International Conference Applications of Mathematics, Praha (J. Brandts et al., eds.). Academy of Sciences of the Czech Republic, Institute of Mathematics, Praha, 2012, pp. 134–143.Google Scholar
  37. [37]
    I. Perugia, D. Schötzau: The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations. Math. Comput. 72 (2003), 1179–1214.MathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    B. Rivière, M. F. Wheeler: A posteriori error estimates for a discontinuous Galerkin method applied to elliptic problems. Log number: R74. Comput. Math. Appl. 46 (2003), 141–163.MATHGoogle Scholar
  39. [39]
    A. Romkes, S. Prudhomme, J. T. Oden: A posteriori error estimation for a new stabilized discontinuous Galerkin method. Appl. Math. Lett. 16 (2003), 447–452.MathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    A. D. Russo, A. E. Alonso: A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems. Comput. Math. Appl. 62 (2011), 4100–4117.MathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    R. Schneider, Y. Xu, A. Zhou: An analysis of discontinuous Galerkin methods for elliptic problems. Adv. Comput. Math. 25 (2006), 259–286.MathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    L. R. Scott, S. Zhang: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990), 483–493.MathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    S. Sun, M. F. Wheeler: L 2(H 1) norm a posteriori error estimation for discontinuous Galerkin approximations of reactive transport problems. J. Sci. Comput. 22 (2005), 501–530.MathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    S. K. Tomar, S. I. Repin: Efficient computable error bounds for discontinuous Galerkin approximations of elliptic problems. J. Comput. Appl. Math. 226 (2009), 358–369.MathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    R. Verfürth: A Review of a Posteriori Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner Series Advances in Numerical Mathematics, John Wiley, Chichester, 1996.Google Scholar
  46. [46]
    H. Xie: A type of multilevel method for the Steklov eigenvalue problem. IMA J. Numer. Anal. 34 (2014), 592–608.MathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    J. Yang, Y. Chen: A unified a posteriori error analysis for discontinuous Galerkin approximations of reactive transport equations. J. Comput. Math. 24 (2006), 425–434.MathSciNetMATHGoogle Scholar
  48. [48]
    Y. Yang, Q. Li, S. Li: Nonconforming finite element approximations of the Steklov eigenvalue problem. Appl. Numer. Math. 59 (2009), 2388–2401.MathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    Y. Zeng, J. Chen, F. Wang: A posteriori error estimates of a weakly over-penalized symmetric interior penalty method for elliptic eigenvalue problems. East Asian J. Appl. Math. 5 (2015), 327–341.MathSciNetCrossRefGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2017

Authors and Affiliations

  1. 1.School of MathematicsJiaying UniversityMeizhouChina
  2. 2.Jiangsu Key Laboratory for NSLSCS, School of Mathematical SciencesNanjing Normal UniversityNanjingChina

Personalised recommendations