Two-weighted estimates for generalized fractional maximal operators on non-homogeneous spaces
Article
First Online:
Received:
Accepted:
- 12 Downloads
Abstract
Let μ be a nonnegative Borel measure on R d satisfying that μ(Q) ⩽ l(Q)n for every cube Q ⊂ R n , where l(Q) is the side length of the cube Q and 0 < n ⩽ d.
We study the class of pairs of weights related to the boundedness of radial maximal operators of fractional type associated to a Young function B in the context of non-homogeneous spaces related to the measure μ. Our results include two-weighted norm and weak type inequalities and pointwise estimates. Particularly, we give an improvement of a two-weighted result for certain fractional maximal operator proved in W.Wang, C. Tan, Z. Lou (2012).
Keywords
non-homogeneous space generalized fractional operator weightMSC 2010
42B25Preview
Unable to display preview. Download preview PDF.
References
- [1]A. Bernardis, E. Dalmasso, G. Pradolini: Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces. Ann. Acad. Sci. Fenn., Math. 39 (2014), 23–50.MathSciNetCrossRefMATHGoogle Scholar
- [2]A. Bernardis, S. Hartzstein, G. Pradolini: Weighted inequalities for commutators of fractional integrals on spaces of homogeneous type. J. Math. Anal. Appl. 322 (2006), 825–846.MathSciNetCrossRefMATHGoogle Scholar
- [3]A. L. Bernardis, M. Lorente, M. S. Riveros: Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions. Math. Inequal. Appl. 14 (2011), 881–895.MathSciNetMATHGoogle Scholar
- [4]A. L. Bernardis, G. Pradolini, M. Lorente, M. S. Riveros: Composition of fractional Orlicz maximal operators and A 1-weights on spaces of homogeneous type. Acta Math. Sin., Engl. Ser. 26 (2010), 1509–1518.MathSciNetCrossRefMATHGoogle Scholar
- [5]D. Cruz-Uribe, A. Fiorenza: The A ∞ property for Young functions and weighted norm inequalities. Houston J. Math. 28 (2002), 169–182.MathSciNetMATHGoogle Scholar
- [6]D. Cruz-Uribe, A. Fiorenza: Endpoint estimates and weighted norm inequalities for commutators of fractional integrals. Publ. Mat., Barc. 47 (2003), 103–131.MathSciNetCrossRefMATHGoogle Scholar
- [7]D. Cruz-Uribe, C.Pérez: On the two-weight problem for singular integral operators. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 1 (2002), 821–849.MathSciNetMATHGoogle Scholar
- [8]J. García-Cuerva, J. M. Martell: Two-weight norm inequalities for maximal operators and fractional integrals on non-homogeneous spaces. Indiana Univ. Math. J. 50 (2001), 1241–1280.MathSciNetCrossRefMATHGoogle Scholar
- [9]O. Gorosito, G. Pradolini, O. Salinas: Weighted weak-type estimates for multilinear commutators of fractional integrals on spaces of homogeneous type. Acta Math. Sin., Engl. Ser. 23 (2007), 1813–1826.MathSciNetCrossRefMATHGoogle Scholar
- [10]O. Gorosito, G. Pradolini, O. Salinas: Boundedness of the fractional maximal operator on variable exponent Lebesgue spaces: a short proof. Rev. Unión Mat. Argent. 53 (2012), 25–27.MathSciNetMATHGoogle Scholar
- [11]G. H. Hardy, J. E. Littlewood, G. Pólya: Inequalities. Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988.Google Scholar
- [12]M. Lorente, J. M. Martell, M. S. Riveros, A. de la Torre: Generalized Hörmander’s conditions, commutators and weights. J. Math. Anal. Appl. 342 (2008), 1399–1425.MathSciNetCrossRefMATHGoogle Scholar
- [13]M. Lorente, M. S. Riveros, A. de la Torre: Weighted estimates for singular integral operators satisfying Hörmander’s conditions of Young type. J. Fourier Anal. Appl. 11 (2005), 497–509.MathSciNetCrossRefMATHGoogle Scholar
- [14]J. Mateu, P. Mattila, A. Nicolau, J. Orobitg: BMO for nondoubling measures. Duke Math. J. 102 (2000), 533–565.MathSciNetCrossRefMATHGoogle Scholar
- [15]Y. Meng, D. Yang: Boundedness of commutators with Lipschitz functions in nonhomogeneous spaces. Taiwanese J. Math. 10 (2006), 1443–1464.MathSciNetCrossRefMATHGoogle Scholar
- [16]F. Nazarov, S. Treil, A. Volberg: Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Not. 1997 (1997), 703–726.CrossRefMATHGoogle Scholar
- [17]F. Nazarov, S. Treil, A. Volberg: Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Not. 1998 (1998), 463–487.CrossRefMATHGoogle Scholar
- [18]C.Pérez: Two weighted inequalities for potential and fractional type maximal operators. Indiana Univ. Math. J. 43 (1994), 663–683.MathSciNetCrossRefMATHGoogle Scholar
- [19]C.Pérez: Weighted norm inequalities for singular integral operators. J. Lond. Math. Soc., II. Ser. 49 (1994), 296–308.MathSciNetCrossRefMATHGoogle Scholar
- [20]C.Pérez: Endpoint estimates for commutators of singular integral operators. J. Funct. Anal. 128 (1995), 163–185.MathSciNetCrossRefMATHGoogle Scholar
- [21]C.Pérez: On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted L p-spaces with different weights. Proc. Lond. Math. Soc., III. Ser. 71 (1995), 135–157.CrossRefMATHGoogle Scholar
- [22]C.Pérez: Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function. J. Fourier Anal. Appl. 3 (1997), 743–756.MathSciNetCrossRefMATHGoogle Scholar
- [23]C.Pérez, G. Pradolini: Sharp weighted endpoint estimates for commutators of singular integrals. Mich. Math. J. 49 (2001), 23–37.MathSciNetCrossRefMATHGoogle Scholar
- [24]G. Pradolini: Weighted inequalities and pointwise estimates for the multilinear fractional integral and maximal operators. J. Math. Anal. Appl. 367 (2010), 640–656.MathSciNetCrossRefMATHGoogle Scholar
- [25]G. Pradolini, O. Salinas: Maximal operators on spaces of homogeneous type. Proc. Am. Math. Soc. 132 (2004), 435–441.MathSciNetCrossRefMATHGoogle Scholar
- [26]X. Tolsa: BMO, H 1, and Calderón-Zygmund operators for non doubling measures. Math. Ann. 319 (2001), 89–149.MathSciNetCrossRefMATHGoogle Scholar
- [27]D. Yang, D. Yang, G. Hu: The Hardy Space H 1 with Non-doubling Measures and Their Applications. Lecture Notes in Mathematics 2084, Springer, Cham, 2013.Google Scholar
- [28]W. Wang, C. Tan, Z. Lou: A note on weighted norm inequalities for fractional maximal operators with non-doubling measures. Taiwanese J. Math. 16 (2012), 1409–1422.MathSciNetCrossRefMATHGoogle Scholar
Copyright information
© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2018