Czechoslovak Mathematical Journal

, Volume 69, Issue 1, pp 207–223 | Cite as

Boundedness of Generalized Fractional Integral Operators on Orlicz Spaces Near L1 Over Metric Measure Spaces

  • Daiki Hashimoto
  • Takao OhnoEmail author
  • Tetsu Shimomura


We are concerned with the boundedness of generalized fractional integral operators Iϱ,τ from Orlicz spaces LΦ(X) near L1(X) to Orlicz spaces LΨ(X) over metric measure spaces equipped with lower Ahlfors Q-regular measures, where Φ is a function of the form Φ(r) = rl(r) and l is of log-type. We give a generalization of paper by Mizuta et al. (2010), in the Euclidean setting. We deal with both generalized Riesz potentials and generalized logarithmic potentials.


Orlicz space Riesz potential fractional integral metric measure space lower Ahlfors regular 

MSC 2010

31B15 46E30 46E35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Björn, J. Björn: Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics 17, European Mathematical Society, Zürich, 2011.CrossRefzbMATHGoogle Scholar
  2. [2]
    A. Cianchi: Strong and weak type inequalities for some classical operators in Orlicz spaces, J. Lond. Math. Soc., II. Ser. 60 (1999), 187–202.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    N. DeJarnette: Is an Orlicz-Poincaré inequality an open ended condition, and what does that mean? J, Math. Anal. Appl. 423 (2015), 358–376.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    B. Dyda: Embedding theorems for Lipschitz and Lorentz spaces on lower Ahlfors regular sets, Stud. Math. 197 (2010), 247–256.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Eridani, H. Gunawan, E. Nakai: On generalized fractional integral operators, Sci. Math. Jpn. 60 (2004), 539–550.MathSciNetzbMATHGoogle Scholar
  6. [6]
    T. Futamura, T. Shimomura: Boundary behavior of monotone Sobolev functions in Orlicz spaces on John domains in a metric space, J. Geom. Anal. 28 (2018), 1233–1244.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    J. García-Cuerva, A. E. Gatto: Boundedness properties of fractional integral operators associated to non-doubling measures, Stud. Math. 162 (2004), 245–261.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    H. Gunawan: A note on the generalized fractional integral operators, J. Indones. Math. Soc. 9 (2003), 39–43.MathSciNetzbMATHGoogle Scholar
  9. [9]
    P. Haj lasz, P. Koskela: Sobolev met Poincaré. Mem. Am. Math. Soc. 145 (2000), No. 688, 101 pages.Google Scholar
  10. [10]
    L. I. Hedberg: On certain convolution inequalities, Proc. Am. Math. Soc. 36 (1972), 505–510.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    J. Heinonen: Lectures on Analysis on Metric Spaces. Universitext, Springer, New York, 2001.CrossRefzbMATHGoogle Scholar
  12. [12]
    T. Hytönen: A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa, Publ. Mat., Barc. 54 (2010), 485–504.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    S. Lisini: Absolutely continuous curves in extended Wasserstein-Orlicz spaces, ESAIM, Control Optim. Calc. Var. 22 (2016), 670–687.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Y. Mizuta, E. Nakai, T. Ohno, T. Shimomura: Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials, J. Math. Soc. Japan. 62 (2010), 707–744.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Y. Mizuta, T. Shimomura: Differentiability and Hölder continuity of Riesz potentials of Orlicz functions, Analysis, München. 20 (2000), 201–223.zbMATHGoogle Scholar
  16. [16]
    Y. Mizuta, T. Shimomura, T. Sobukawa: Sobolev’s inequality for Riesz potentials of functions in non-doubling Morrey spaces, Osaka J. Math. 46 (2009), 255–271.MathSciNetzbMATHGoogle Scholar
  17. [17]
    E. Nakai: On generalized fractional integrals, Taiwanese J. Math. 5 (2001), 587–602.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    E. Nakai: On generalized fractional integrals in the Orlicz spaces on spaces of homogeneous type, Sci. Math. Jpn. 54 (2001), 473–487.MathSciNetzbMATHGoogle Scholar
  19. [19]
    F. Nazarov, S. Treil, A. Volberg: Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces, Int. Math. Res. Not. No. 15 (1997), 703–726.CrossRefzbMATHGoogle Scholar
  20. [20]
    F. Nazarov, S. Treil, A. Volberg: Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces, Int. Math. Res. Not. No. 9 (1998), 463–487.CrossRefzbMATHGoogle Scholar
  21. [21]
    T. Ohno, T. Shimomura: Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces, Czech. Math. J. 64 (2014), 209–228.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    T. Ohno, T. Shimomura: Trudinger’s inequality and continuity for Riesz potentials of functions in Musielak-Orlicz-Morrey spaces on metric measure spaces, Nonlinear Anal., Theory Methods Appl., Ser. A. 106 (2014), 1–17.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    T. Ohno, T. Shimomura: Musielak-Orlicz-Sobolev spaces on metric measure spaces, Czech. Math. J. 65 (2015), 435–474.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    R. O’Neil: Fractional integration in Orlicz spaces, I. Trans. Am. Math. Soc. 115 (1965), 300–328.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    Y. Sawano, T. Shimomura: Sobolev embeddings for generalized Riesz potentials of functions in Morrey spaces L(1,ϕ)(G) over nondoubling measure spaces. J. Funct. Spaces Appl. 2013 (2013), Article ID 984259, 12 pages.Google Scholar
  26. [26]
    Y. Sawano, T. Shimomura: Sobolev embeddings for Riesz potentials of functions in non-doubling Morrey spaces of variable exponents, Collect. Math. 64 (2013), 313–350.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    Y. Sawano, T. Shimomura: Boundedness of the generalized fractional integral operators on generalized Morrey spaces over metric measure spaces, Z. Anal. Anwend. 36 (2017), 159–190.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    Y. Sawano, T. Shimomura: Generalized fractional integral operators over non-doubling metric measure spaces, Integral Transforms Spec. Funct. 28 (2017), 534–546.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    X. Tolsa: BMO, H 1, and Calderón-Zygmund operators for nondoubling measures, Math. Ann. 319 (2001), 89–149.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2018

Authors and Affiliations

  1. 1.Nagasakihokuyodai High SchoolNagasakiJapan
  2. 2.Faculty of EducationOita UniversityDannoharu Oita-cityJapan
  3. 3.Department of Mathematics, Graduate School of EducationHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations