Czechoslovak Mathematical Journal

, Volume 69, Issue 1, pp 99–116 | Cite as

On Kneser Solutions of the n-th Order Nonlinear Differential Inclusions

  • Martina PavlačkováEmail author


The paper deals with the existence of a Kneser solution of the n-th order nonlinear differential inclusion
$${x^{(n)}}(t) \in - {A_1}(t,x,(t),...,{x^{(n - 1)}}(t)){x^{(n - 1)}}(t) - ... - {A_n}(t,x(t),...,{x^{(n - 1)}}(t))x(t)\;\text{for}\;\text{a.a.}\;t\; \in [a,\infty ),$$
where a ∈ (0,∞), and Ai: [a,∞) × ℝn → ℝ, i = 1,..., n, are upper-Carathéodory mappings. The derived result is finally illustrated by the third order Kneser problem.


asymptotic n-th order vector problems Rδ-set inverse limit technique Kneser problem 

MSC 2010

34A60 34B15 34B40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. P. Agarwal, D. O’Regan: Infinite Interval Problems for Differential, Difference and Integral Equations. Kluwer Academic Publishers, Dordrecht, 2001.CrossRefzbMATHGoogle Scholar
  2. [2]
    J. Andres, G. Gabor, L. Górniewicz: Topological structure of solution sets to multivalued asymptotic problems, Z. Anal. Anwend. 19 (2000), 35–60.CrossRefzbMATHGoogle Scholar
  3. [3]
    J. Andres, G. Gabor, L. Górniewicz: Acyclicity of solution sets to functional inclusions, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods. 49 (2002), 671–688.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    J. Andres, L. Górniewicz: Topological Fixed Point Principles for Boundary Value Problems. Topological Fixed Point Theory and Its Applications 1, Kluwer Academic Publishers, Dordrecht, 2003.CrossRefzbMATHGoogle Scholar
  5. [5]
    J. Andres, M. Pavlačková: Asymptotic boundary value problems for second-order differential systems, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods. 71 (2009), 1462–1473.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    J. Andres, M. Pavlačková: Boundary value problems on noncompact intervals for the n-th order vector differential inclusions, Electron. J. Qual. Theory Differ. Equ. 2016 (2016), 19 pages.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    J. Appell, E. De Pascale, N. H. Thái, P. P. Zabreˇıko: Multi-valued superpositions, Diss. Math. 345 (1995), 97 pages.MathSciNetzbMATHGoogle Scholar
  8. [8]
    J.-P. Aubin, A. Cellina: Differential Inclusions. Set-Valued Maps and Viability Theory. Grundlehren der Mathematischen Wissenschaften 264, Springer, Berlin, 1984.CrossRefzbMATHGoogle Scholar
  9. [9]
    M. Bartušek, M. Cecchi, M. Marini: On Kneser solutions of nonlinear third order differential equations, J. Math. Anal. Appl. 261 (2001), 72–84.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    M. Bartušek, Z. Došlá: Oscillation of third order differential equation with damping term, Czech. Math. J. 65 (2015), 301–316.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    K. Borsuk: Theory of Retracts. Monografie Matematyczne 44, PWN, Warszawa, 1967.zbMATHGoogle Scholar
  12. [12]
    M. Cecchi, M. Furi, M. Marini: About the solvability of ordinary differential equations with asymptotic boundary conditions, Boll. Unione Mat. Ital., VI. Ser., C, Anal. Funz. Appl. 4 (1985), 329–345.MathSciNetzbMATHGoogle Scholar
  13. [13]
    E. Fermi: Un metodo statistico per la determinazione di alcune prioriet á dell’atomo, Rend. R. Accad. Nat. Lincei. 6 (1927), 602–607. (In Italian.)Google Scholar
  14. [14]
    A. F. Filippov: Differential Equations with Discontinuous Right-Hand Sides. Mathematics and Its Applications (Soviet Series) 18, Kluwer Academic Publishers, Dordrecht, 1988.CrossRefGoogle Scholar
  15. [15]
    G. Gabor: On the acyclicity of fixed point sets of multivalued maps, Topol. Methods Nonlinear Anal. 14 (1999), 327–343.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    L. Górniewicz: Topological Fixed Point Theory of Multivalued Mappings. Mathematics and Its Applications 495, Kluwer Academic Publishers, Dordrecht, 1999.CrossRefzbMATHGoogle Scholar
  17. [17]
    J. R. Graef, J. Henderson, A. Ouahab: Impulsive Differential Inclusions. A Fixed Point Approach. De Gruyter Series in Nonlinear Analysis and Applications 20, De Gruyter, Berlin, 2013.CrossRefzbMATHGoogle Scholar
  18. [18]
    P. Hartman, A. Wintner: On the non-increasing solutions of y′′ = f(x, y, y′), Am. J. Math. 73 (1951), 390–404.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    L. V. Kantorovich, G. P. Akilov: Functional Analysis in Normed Spaces. International Series of Monographs in Pure and Applied Mathematics 46, Pergamon Press, Oxford, 1964.zbMATHGoogle Scholar
  20. [20]
    I. T. Kiguradze, T. A. Chanturia: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Mathematics and Its Applications (Soviet Series) 89, Kluwer Academic Publishers, Dordrecht, 1993.CrossRefGoogle Scholar
  21. [21]
    I. T. Kiguradze, B. L. Shekhter: Singular boundary value problems for second-order ordinary differential equations, J. Soviet Math. 43 (1988), 2340–2417 (In English. Russian original.); translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. 30 (1987), 105–201.CrossRefzbMATHGoogle Scholar
  22. [22]
    A. Kneser: Untersuchung und asymptotische Darstellung der Integrale gewisser Differentialgleichungen bei grossen reellen Werten des Arguments I, II, J. für Math. 116 (1896), 178–212; 117 (1896), 72–103. (In German.) zblzbMATHGoogle Scholar
  23. [23]
    V. A. Kozlov: On Kneser solutions of higher order nonlinear ordinary differential equations, Ark. Mat. 37 (1999), 305–322.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    J. Kurzweil: Ordinary Differential Equations. Introduction to the Theory of Ordinary Differential Equations in the Real Domain. Studies in Applied Mechanics 13, Elsevier Scientific Publishing, Amsterdam; SNTL Publishers of Technical Literature, Praha, 1986.zbMATHGoogle Scholar
  25. [25]
    D. O’Regan, A. Petruşel: Leray-Schauder, Lefschetz and Krasnoselskii fixed point theory in Fréchet spaces for general classes of Volterra operators, Fixed Point Theory. 9 (2008), 497–513.MathSciNetzbMATHGoogle Scholar
  26. [26]
    S. Padhi, S. Pati: Theory of Third-Order Differential Equations. Springer, New Delhi, 2014.CrossRefzbMATHGoogle Scholar
  27. [27]
    N. Partsvania, Z. Sokhadze: Oscillatory and monotone solutions of first-order nonlinear delay differential equations, Georgian Math. J. 23 (2016), 269–277.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    L. H. Thomas: The calculation of atomic fields, Proceedings Cambridge. 23 (1927), 542–548. zbl doiCrossRefzbMATHGoogle Scholar
  29. [29]
    I. I. Vrabie: Compactness Methods for Nonlinear Evolutions. Pitman Monographs and Surveys in Pure and Applied Mathematics 75, Longman Scientific &Technical, Harlow; John Wiley & Sons, New York, 1995.Google Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2018

Authors and Affiliations

  1. 1.Department of Mathematical Analysis and Applications of Mathematics, Faculty of SciencePalacký UniversityOlomoucCzech Republic

Personalised recommendations