Czechoslovak Mathematical Journal

, Volume 69, Issue 1, pp 45–53 | Cite as

A Remark on Weak McShane Integral

  • Kazushi YoshitomiEmail author


We characterize the weak McShane integrability of a vector-valued function on a finite Radon measure space by means of only finite McShane partitions. We also obtain a similar characterization for the Fremlin generalized McShane integral.


weak McShane integral finite McShane partition Radon measure space 

MSC 2010



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Bauer: Measure and Integration Theory. De Gruyter Studies in Mathematics 26. Walter de Gruyter, Berlin, 2001.CrossRefzbMATHGoogle Scholar
  2. [2]
    C.-A. Faure, J. Mawhin: Integration over unbounded multidimensional intervals, J. Math. Anal. Appl. 205 (1997), 65–77.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    D. H. Fremlin: Topological Riesz Spaces and Measure Theory. Cambridge University Press, London, 1974.CrossRefzbMATHGoogle Scholar
  4. [4]
    D. H. Fremlin: The generalized McShane integral, Ill. J. Math. 39 (1995), 39–67.MathSciNetzbMATHGoogle Scholar
  5. [5]
    J. L. Kelley, T. P. Srinivasan: Measure and Integral Vol. 1. Graduate Texts in Mathematics 116. Springer, New York, 1988.CrossRefzbMATHGoogle Scholar
  6. [6]
    M. Saadoune, R. Sayyad: The weak McShane integral, Czech. Math. J. 64 (2014), 387–418.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Š. Schwabik, G. Ye: Topics in Banach Space Integration. Series in Real Analysis Vol. 10. World Scientific, Singapore, 2005.CrossRefzbMATHGoogle Scholar
  8. [8]
    M. Talagrand: Pettis integral and measure theory. Mem. Am. Math. Soc. 307 (1984).Google Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Information SciencesTokyo Metropolitan UniversityTokyoJapan

Personalised recommendations