Advertisement

Applications of Mathematics

, Volume 63, Issue 6, pp 629–641 | Cite as

Improved convergence estimate for a multiply polynomially smoothed two-level method with an aggressive coarsening

  • Radek TezaurEmail author
  • Petr Vaněk
Article
  • 21 Downloads

Abstract

A variational two-level method in the class of methods with an aggressive coarsening and a massive polynomial smoothing is proposed. The method is a modification of the method of Section 5 of Tezaur, Vaněk (2018). Compared to that method, a significantly sharper estimate is proved while requiring only slightly more computational work.

Keywords

two-level method aggressive coarsening smoothed aggregation polynomial smoother convergence analysis 

MSC 2010

65F10 65M55 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Brandt: Algebraic multigrid theory: The symmetric case. Appl. Math. Comput. 19 (1986), 23–56.MathSciNetzbMATHGoogle Scholar
  2. [2]
    J. Brousek, P. Franková, M. Hanuš, H. Kopincová, R. Kužel, R. Tezaur, P. Vaněk, Z. Vastl: An overview of multilevel methods with aggressive coarsening and massive polynomial smoothing. ETNA, Electron. Trans. Numer. Anal. 44 (2015), 401–442.MathSciNetzbMATHGoogle Scholar
  3. [3]
    P. G. Ciarlet: The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications 4, North–Holland Publishing Company, Amsterdam, 1978.Google Scholar
  4. [4]
    W. Hackbusch: Multi–Grid Methods and Applications. Springer Series in Computational Mathematics 4, Springer, Berlin, 1985.CrossRefGoogle Scholar
  5. [5]
    R. Tezaur, P. Vaněk: Improved convergence bounds for two–level methods with an aggressive coarsening and massive polynomial smoothing. ETNA, Electron. Trans. Numer. Anal. 48 (2018), 264–285.MathSciNetCrossRefGoogle Scholar
  6. [6]
    A. Toselli, O. Widlund: Domain Decomposition Methods—Algorithms and Theory. Springer Series in Computational Mathematics 34, Springer, Berlin, 2005.CrossRefGoogle Scholar
  7. [7]
    P. Vaněk, M. Brezina, J. Mandel: Convergence of algebraic multigrid based on smoothed aggregation. Numer. Math. 88 (2001), 559–579.MathSciNetCrossRefGoogle Scholar
  8. [8]
    P. Vaněk, M. Brezina, R. Tezaur: Two–grid method for linear elasticity on unstructured meshes. SIAM J. Sci. Comput. 21 (1999), 900–923.MathSciNetCrossRefGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2018

Authors and Affiliations

  1. 1.Department of Aeronautics and AstronauticsStanford UniversityStanfordUSA
  2. 2.Department of MathematicsUniversity of West BohemiaPlzeňCzech Republic

Personalised recommendations