Advertisement

Applications of Mathematics

, Volume 63, Issue 6, pp 665–686 | Cite as

A comparison of deterministic and Bayesian inverse with application in micromechanics

  • Radim BlahetaEmail author
  • Michal Béreš
  • Simona Domesová
  • Pengzhi Pan
Article
  • 17 Downloads

Abstract

The paper deals with formulation and numerical solution of problems of identification of material parameters for continuum mechanics problems in domains with heterogeneous microstructure. Due to a restricted number of measurements of quantities related to physical processes, we assume additional information about the microstructure geometry provided by CT scan or similar analysis. The inverse problems use output least squares cost functionals with values obtained from averages of state problem quantities over parts of the boundary and Tikhonov regularization. To include uncertainties in observed values, Bayesian inversion is also considered in order to obtain a statistical description of unknown material parameters from sampling provided by the Metropolis-Hastings algorithm accelerated by using the stochastic Galerkin method. The connection between Bayesian inversion and Tikhonov regularization and advantages of each approach are also discussed.

Keywords

inverse problems Bayesian approach stochastic Galerkin method 

MSC 2010

86-08 82-08 65N21 65C60 60-08 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. Babuška, R. Tempone, G. E. Zouraris: Galerkin finite element approximations of Stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004), 800–825.MathSciNetCrossRefGoogle Scholar
  2. [2]
    M. Béreš, S. Domesová: The stochastic Galerkin method for Darcy flow problem with log–normal random field coefficients. Adv. Electr. Electron. Eng. 15 (2017), 267–279.Google Scholar
  3. [3]
    R. Blaheta, M. Béreš, S. Domesová: A study of stochastic FEM method for porous media flow problem. Proc. Int. Conf. AppliedMathematics in Engineering and Reliability. CRC Press, 2016, pp. 281–289.Google Scholar
  4. [4]
    R. Blaheta, R. Kohut, A. Kolcun, K. Souček, L. Staš, L. Vavro: Digital image based numerical micromechanics of geocomposites with application to chemical grouting. Int. J. Rock Mechanics and Mining Sciences 77 (2015), 77–88.CrossRefGoogle Scholar
  5. [5]
    D. Boffi, F. Brezzi, M. Fortin: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics 44, Springer, Berlin, 2013.CrossRefGoogle Scholar
  6. [6]
    G. F. Carey, S. S. Chow, M. K. Seager: Approximate boundary–flux calculations. Comput. Methods Appl. Mech. Eng. 50 (1985), 107–120.MathSciNetCrossRefGoogle Scholar
  7. [7]
    J. A. Christen, C. Fox: Markov chain Monte Carlo using an approximation. J. Comput. Graph. Statist. 14 (2005), 795–810.MathSciNetCrossRefGoogle Scholar
  8. [8]
    S. Domesová, M. Béreš: Inverse problem solution using Bayesian approach with application to Darcy flow material parameters estimation. Adv. Electr. Electron. Eng. 15 (2017), 258–266.Google Scholar
  9. [9]
    S. Domesová, M. Béreš: A Bayesian approach to the identification problem with given material interfaces in the Darcy flow. Int. Conf. High Performance Computing in Science and Engineering, 2017 (T. Kozubek et al., eds.). Springer International Publishing, Cham, 2018, pp. 203–216.Google Scholar
  10. [10]
    D. Foreman–Mackey, D. W. Hogg, D. Lang, J. Goodman: emcee: The MCMC hammer. Publ. Astron. Soc. Pacific 125 (2013), 306–312.CrossRefGoogle Scholar
  11. [11]
    G. N. Gatica: A Simple Introduction to the Mixed Finite Element Method. Theory and Applications. SpringerBriefs in Mathematics, Springer, Cham, 2014.CrossRefGoogle Scholar
  12. [12]
    J. Haslinger, R. Blaheta, R. Hrtus: Identification problems with given material interfaces. J. Comput. Appl. Math. 310 (2017), 129–142.MathSciNetCrossRefGoogle Scholar
  13. [13]
    G. J. Lord, C. E. Powell, T. Shardlow: An Introduction to Computational Stochastic PDEs. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2014.CrossRefGoogle Scholar
  14. [14]
    Mathworks: Matlab Optimization Toolbox User’s Guide. Available at https://uk. mathworks. com/products/optimization. html (2017).Google Scholar
  15. [15]
    C. E. Powell, D. Silvester, V. Simoncini: An efficient reduced basis solver for Stochastic Galerkin matrix equations. SIAM J. Sci. Comput. 39 (2017), A141–A163.MathSciNetCrossRefGoogle Scholar
  16. [16]
    I. Pultarová: Hierarchical preconditioning for the stochastic Galerkin method: Upper bounds to the strengthened CBS constants. Comput. Math. Appl. 71 (2016), 949–964.MathSciNetCrossRefGoogle Scholar
  17. [17]
    C. P. Robert: The Bayesian Choice. From Decision–Theoretic Foundations to Computational Implementation. Springer Texts in Statistics, Springer, New York, 2007.zbMATHGoogle Scholar
  18. [18]
    C. P. Robert, G. Casella: Monte Carlo Statistical Methods. Springer Texts in Statistics, Springer, New York, 2004.CrossRefGoogle Scholar
  19. [19]
    A. Sokal: Monte Carlo methods in statistical mechanics: Foundations and new algorithms. Functional Integration: Basics and Applications, 1996 (C. DeWitt–Morette et al., eds.). NATO ASI Series. Series B. Physics. 361, Plenum Press, New York, 1997, pp. 131–192.zbMATHGoogle Scholar
  20. [20]
    A. M. Stuart: Inverse problems: A Bayesian perspective. Acta Numerica 19 (2010), 451–559.MathSciNetCrossRefGoogle Scholar
  21. [21]
    M. B. Thompson: A comparison of methods for computing autocorrelation time. Available at https://arxiv. org/abs/1011. 0175 (2010).Google Scholar
  22. [22]
    C. R. Vogel: Computational Methods for Inverse Problems. Frontiers in Applied Mathematics 23, Society for Industrial and Applied Mathematics, Philadelphia, 2002.CrossRefGoogle Scholar
  23. [23]
    D. Xiu: Numerical Methods for Stochastic Computations. A Spectral Method Approach. Princeton University Press, Princeton, 2010.CrossRefGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2018

Authors and Affiliations

  • Radim Blaheta
    • 1
    Email author
  • Michal Béreš
    • 2
    • 3
    • 4
  • Simona Domesová
    • 2
    • 3
    • 4
  • Pengzhi Pan
    • 5
  1. 1.Institute of Geonics of the CASOstravaCzech Republic
  2. 2.Institute of Geonics of the CASOstravaCzech Republic
  3. 3.Department of Applied Mathematics, Faculty of Electrical Engineering and Computer ScienceVŠB – Technical University of OstravaOstravaCzech Republic
  4. 4.IT4Innovations National Supercomputing CenterVŠB – Technical University of OstravaOstravaCzech Republic
  5. 5.Institute of Rock and Soil MechanicsChinese Academy of Sciences, XiaohongshanWuchang, WuhanChina

Personalised recommendations