Skip to main content
Log in

A real-valued block conjugate gradient type method for solving complex symmetric linear systems with multiple right-hand sides

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We consider solving complex symmetric linear systems with multiple right-hand sides. We assume that the coefficient matrix has indefinite real part and positive definite imaginary part. We propose a new block conjugate gradient type method based on the Schur complement of a certain 2-by-2 real block form. The algorithm of the proposed method consists of building blocks that involve only real arithmetic with real symmetric matrices of the original size. We also present the convergence property of the proposed method and an efficient algorithmic implementation. In numerical experiments, we compare our method to a complex-valued direct solver, and a preconditioned and nonpreconditioned block Krylov method that uses complex arithmetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Axelsson, A. Kucherov: Real valued iterative methods for solving complex symmetric linear systems. Numer. Linear Algebra Appl. 7 (2000), 197–218.

    Article  MathSciNet  MATH  Google Scholar 

  2. O. Axelsson, M. Neytcheva, B. Ahmad: A comparison of iterative methods to solve complex valued linear algebraic systems. Numer. Algorithms 66 (2014), 811–841.

    Article  MathSciNet  MATH  Google Scholar 

  3. Z.-Z. Bai, M. Benzi, F. Chen: Modified HSS iteration methods for a class of complex symmetric linear systems. Computing 87 (2010), 93–111.

    Article  MathSciNet  MATH  Google Scholar 

  4. Z.-Z. Bai, M. Benzi, F. Chen: On preconditioned MHSS iteration methods for complex symmetric linear systems. Numer. Algorithms 56 (2011), 297–317.

    Article  MathSciNet  MATH  Google Scholar 

  5. Z.-Z. Bai, M. Benzi, F. Chen, Z.-Q. Wang: Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems. IMA J. Numer. Anal. 33 (2013), 343–369.

    Article  MathSciNet  MATH  Google Scholar 

  6. Z.-Z. Bai, G. H. Golub, M. K. Ng: Hermitian and Skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24 (2003), 603–626.

    Article  MathSciNet  MATH  Google Scholar 

  7. Z.-Z. Bai, G. H. Golub, M. K. Ng: On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations. Numer. Linear Algebra Appl. 14 (2007), 319–335; erratum ibid. 19 (2012), 891.

    Article  MathSciNet  MATH  Google Scholar 

  8. CONQUEST: Linear Scaling DFT. http://www.order-n.org/.

  9. T. A. Davis, Y. Hu: The university of Florida sparse matrix collection. ACM Trans. Math. Softw. 38 (2011), Paper No. 1, 25 pages.

    Google Scholar 

  10. D. Day, M. A. Heroux: Solving complex-valued linear systems via equivalent real formulations. SIAM J. Sci. Comput. 23 (2001), 480–498.

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Du, Y. Futamura, T. Sakurai: Block conjugate gradient type methods for the approximation of bilinear form C H A −1 B. Comput. Math. Appl. 66 (2014), 2446–2455.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. A. Dubrulle: Retooling the method of block conjugate gradients. ETNA, Electron. Trans. Numer. Anal. 12 (2001), 216–233.

    MathSciNet  MATH  Google Scholar 

  13. Eigen. http://eigen.tuxfamily.org/.

  14. S. C. Eisenstat, H. C. Elman, M. H. Schultz: Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20 (1983), 345–357.

    Article  MathSciNet  MATH  Google Scholar 

  15. ELSES matrix library. http://www.elses.jp/matrix/.

  16. R. W. Freund: Conjugate gradient-type methods for linear systems with complex symmetric coefficient matrices. SIAM J. Sci. Stat. Comput. 13 (1992), 425–448.

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Futamura, H. Tadano, T. Sakurai: Parallel stochastic estimation method of eigenvalue distribution. JSIAM Lett. 2 (2010), 127–130.

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Ikegami, T. Sakurai: Contour integral eigensolver for non-Hermitian systems: a Rayleigh-Ritz-type approach. Taiwanese J. Math. 14 (2010), 825–837.

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Ikegami, T. Sakurai, U. Nagashima: A filter diagonalization for generalized eigenvalue problems based on the Sakurai-Sugiura projection method. J. Comput. Appl. Math. 233 (2010), 1927–1936.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Imakura, L. Du, T. Sakurai: A block Arnoldi-type contour integral spectral projection method for solving generalized eigenvalue problems. Appl. Math. Lett. 32 (2014), 22–27.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. A. Nikishin, A. Y. Yeremin: Variable block CG algorithms for solving large sparse symmetric positive definite linear systems on parallel computers. I. General iterative scheme. SIAM J. Matrix Anal. Appl. 16 (1995), 1135–1153.

    Article  MathSciNet  MATH  Google Scholar 

  22. D. P. O’Leary: The block conjugate gradient algorithm and related methods. Linear Algebra Appl. 29 (1980), 293–322.

    Article  MathSciNet  MATH  Google Scholar 

  23. C. C. Paige, M. A. Saunders: Solutions of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12 (1975), 617–629.

    Article  MathSciNet  MATH  Google Scholar 

  24. E. Polizzi: Density-matrix-based algorithm for solving eigenvalue problems. Phys. Rev. B 79 (2009), 115112.

    Article  Google Scholar 

  25. Y. Saad, M. H. Schultz: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7 (1986), 856–869.

    Article  MathSciNet  MATH  Google Scholar 

  26. T. Sakurai, H. Sugiura: A projection method for generalized eigenvalue problems using numerical integration. J. Comput. Appl. Math. 159 (2003), 119–128.

    Article  MathSciNet  MATH  Google Scholar 

  27. T. Sakurai, H. Tadano: CIRR: a Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems. Hokkaido Math. J. 36 (2007), 745–757.

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Sogabe, S.-L. Zhang: A COCR method for solving complex symmetric linear systems. J. Comput. Appl. Math. 199 (2007), 297–303.

    Article  MathSciNet  MATH  Google Scholar 

  29. H. Tadano, T. Sakurai: A block Krylov subspace method for the contour integral method and its application to molecular orbital computations. IPSJ Trans. Adv. Comput. Syst. 2 (2009), 10–18. (In Japanese.)

    Google Scholar 

  30. H. A. van der Vorst: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the Solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13 (1992), 631–644.

    Article  MathSciNet  MATH  Google Scholar 

  31. H. A. van der Vorst, J. B. M. Melissen: A Petrov-Galerkin type method for solving Axk = b, where A is symmetric complex. IEEE Transactions on Magnetics 26 (1990), 706–708.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Futamura.

Additional information

This work was supported in part by JST/CREST, JST/ACT-I (Grant No. JPMJPR16U6), MEXT KAKENHI (Grant Nos. 25286097, 17K12690), and University of Tsukuba Basic Research Support Program Type A.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Futamura, Y., Yano, T., Imakura, A. et al. A real-valued block conjugate gradient type method for solving complex symmetric linear systems with multiple right-hand sides. Appl Math 62, 333–355 (2017). https://doi.org/10.21136/AM.2017.0023-17

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2017.0023-17

Keywords

MSC 2010

Navigation