Skip to main content
Log in

Influence of hydrodynamics on preflotation process in flotation machine

  • Special Review Article
  • Published:
Minerals & Metallurgical Processing Aims and scope Submit manuscript

Abstract

This paper presents the results of an investigation into the influence of hydrodynamics on a preflotation process for the copper sulfide ore from the Fore-Sudetic Monocline deposits in Poland in a flotation machine. The main aim of the preflotation stage for Polish copper ore is to remove the easy-to-float organic matter — organic carbon — that causes serious problems in metallurgical processes. The organic matter is connected with the presence of shale ore. This paper describes the preflotation experiments conducted to investigate the effect of various stirrer speeds. The upgrading selectivity of copper and organic carbon were analyzed and compared. The results show that the effectiveness of separation between organic carbon and copper decreases with increased stirrer speed in the laboratory flotation machine. The more intensive the mixing of the flotation suspension, the lower the selectivity of the preflotation experiment. Lower stirrer speed probably provides lower mechanical entrainment and flotation of copper minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, N., and Jameson, G.J., 1985, “The effect of bubble size on the rate of flotation of fine particles,” International Journal of Mineral Processing, Vol. 14, pp. 195–215, https://doi.org/10.1016/0301-7516(85)90003-1.

    Article  Google Scholar 

  • Bakalarz, A., and Drzymala, J., 2013, “Interrelation of the Fuerstenau upgrading curve parameters with kinetics of separation,” Physicochemical Problems of Mineral Processing, Vol. 49, No. 2, pp. 443–451.

    Google Scholar 

  • Burns, F., Peng, Y., Seaman, D., and Bradshaw, D., 2014, “The development of regrind–flotation pre-treatment of the CIL feed in copper–gold plants,” Powder Technology, Vol. 258, pp. 60–65, https://doi.org/10.1016/j.powtec.2014.03.022.

    Article  Google Scholar 

  • Drzymala, J., and Ahmed, H.A., 2005, “Mathematical equations for approximation of separation results using the Fuerstenau upgrading curves,” International Journal of Mineral Processing, Vol. 76, No. 1, pp. 55–65, https://doi.org/10.1016/j.minpro.2004.10.002.

    Article  Google Scholar 

  • Duchnowska, M., and Drzymala, J., 2011, “Transformation of equation y=a(100-x)/ (ax) for approximation of separation results plotted as Fuerstenau’s upgrading curve for application in other upgrading curves,” Physicochemical Problems of Mineral Processing, Vol. 47, pp. 123–130.

    Google Scholar 

  • Fleming, C., Geldart, J., Blatter, P., Cousin, P., and Robitaille, J., 2008, “Flowsheet development for Agnico Eagle’s Refractory Gold Kittila Project in Finland,” Hydrometallurgy 2008, Proceedings of the VI International Symposium, C.A. Young, ed., pp. 404–413.

    Google Scholar 

  • Healy, D.F., 2005, “The Depression of Sphalerite during Carbon Preflotation and Lead Flotation at the Century Mine Concentrator,” Ph.D. Thesis, Curtin University of Technology, Western Australian School of Mines.

    Google Scholar 

  • Konieczny, A., Pawlos, W., Krzeminska, M., Kaleta, R., and Kurzydlo, P., 2013, “Evaluation of organic carbon separation from copper ore by preflotation,” Physicochem. Probl. Miner. Process., Vol. 49, No. 1, pp. 189–201.

    Google Scholar 

  • Konopacka, Z., and Drzymala, J., 2010, “Types of particles recovery-water recovery entrainment plots useful in flotation research,” Adsorption, Vol. 16, No. 4, pp. 313–320, https://doi.org/10.1007/s10450-010-9246-x.

    Article  Google Scholar 

  • Lynch, A.J., Johnson, N.W., Manlapig, E.V., and Thorne, C.G., 1981, “Mineral and coal flotation circuits,” Developments in Mineral Processing, Vol. 3, D.W. Fuerstenau, ed., Elsevier Science Publisher B.V., Amsterdam, Netherlands.

  • Pokrajcic, Z., Harbort, G.J., Lawson, V., and Reemeyer, L., 2005, “Applications of the Jameson cell at the head of base metal flotation circuits,” Centenary of Flotation Symposium Conference Proceedings, Brisbane, Queensland, Australia, June 6–9, 2005, pp. 165–170.

    Google Scholar 

  • Pyke, B.L., Johnston, R.F., and Brooks, P., 1999, “The characterisation and behaviour of carbonaceous material in a refractory gold bearing ore,” Minerals Engineering, Vol. 12, No. 8, pp. 851–862, https://doi.org/10.1016/s0892-6875(99)00073-4.

    Article  Google Scholar 

  • Schubert, H., 1985, “On some aspects of the hydrodynamics of flotation processes,” Flotation Sulphide Minerals, K.S.E. Forssberg, ed., Elsevier, pp. 337–352.

    Google Scholar 

  • Solari, J.A., and Gochin, R.J., 1992, “Fundamental aspects of microbubble flotation process,” Colloid Chemistry in Mineral Processing, Developments in Mineral Processing, J.S. Laskowski and J. Ralston, eds., Elsevier, pp. 361–399.

    Google Scholar 

  • Sutherland, K.L., and Wark, I.W., 1955, Principles of Flotation, Australasian Institute of Mining and Metallurgy, Melbourne, Australia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bakalarz Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakalarz, A., Duchnowska, M. & Pawlos, W. Influence of hydrodynamics on preflotation process in flotation machine. Mining, Metallurgy & Exploration 35, 19–23 (2018). https://doi.org/10.19150/mmp.8054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.19150/mmp.8054

Key words

Navigation