Skip to main content
Log in

System dynamics and discrete event simulation of copper smelters

  • Special Review Article
  • Published:
Minerals & Metallurgical Processing Aims and scope Submit manuscript

Abstract

Discrete event simulation (DES) is an appropriate framework for the plant-wide analysis of copper smelters. These smelters apply a common set of chemical reactions: copper-iron sulfides are blasted with oxygen-enriched air, sending the iron into a slag phase and the sulfur into the offgas. Moreover, conventional copper smelters exhibit similar operational dynamics: a smelting furnace operates continually, feeding into an alternating set of converters that produce batches of blister copper. The thermochemical and operational commonalities of copper smelters are integrated within the DES framework. This serves as a common basis to begin evaluating the system dynamics of individual smelters. For complex problems, the simulation framework should be developed in phases, incorporating feedback from different personnel who have complementary perspectives. Sample computations are provided in this paper based on the Hernán Videla Lira smelter, whose production is constrained by meteorological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altiok, T, and Melamed, B., 2007, “Output analysis,” Simulation Modeling and Analysis with Arena, Elsevier, Oxford, UK, Chap. 4, pp. 55–64, https://doi.org/10.1016/b978-012370523-5/50010-9.

    Chapter  Google Scholar 

  • Brininstool, M., 2015, “Copper” Mineral Commodity Summaries, U.S. Geological Survey, Reston, VA, pp. 48–49, https://doi.org/10.3133/70140094.

    Google Scholar 

  • Campbell, A., Reed, M., and Warner, A., 2013, “Debottlenecking and optimisation of copper smelters leveraging simulation,” Nickolas Themelis Symposium of Pyrometallurgy and Process Engineering (Copper 2013), R. Bassa, R. Parra, A. Luraschi and S. Demetrio, eds.,The Chilean Institute of Mining Engineers, Santiago, Chile, pp. 1071–1080.

    Google Scholar 

  • Cardona, N., Mackey, P, Coursol, P, Parada, R., and Parra, R., 2012, “Optimizing Peirce-Smith converting using thermodynamic modeling and plant sampling,” JOM, Vol. 64, No.5, pp. 546–550, https://doi.org/10.1007/s11837-012-0329-x.

    Article  Google Scholar 

  • Coker, A.K., 2001a, “Reaction rate expression,” Modeling of Chemical Kinetics and Reactor Design, Gulf Professional Publishing, Houston, TX, Chap. 3, pp. 109–217, https://doi.org/10.1016/b978-088415481-5/50005-x.

    Google Scholar 

  • Coker, A.K., 2001b, “Industrial and laboratory reactors,” Modeling of Chemical Kinetics and Reactor Design, Gulf Professional Publishing, Houston, TX, Chap. 4, pp. 218–259, https://doi.org/10.1016/b978-088415481-5/50006-1.

    Google Scholar 

  • Comisión Nacional del Medio Ambiente, 2003, “Resultados del plan de descontaminación de la Fundición Hernán Videla Lira,” [Results of the pollution mitigation plan of the Hernán Videla Lira Smelter], Santiago, Chile, pp. 1–17 [In Spanish]

  • Coursol, P., and Mackey, P., 2009, “Optimization of the Xstrata Copper-Horne smelter operation using discrete event simulation,” CIM Bulletin, Vol. 102, No. 1114, pp. 5–10.

    Google Scholar 

  • Damarion, C., and Nastasi, A., 2008, “Discrete rate simulation using linear programming,” 2008 Winter Simulation Conference, S. Mason, R. Hill, L. Mönch and O. Rose, eds., pp. 740–749.

  • Davenport, W., King, M., Schlesinger, M., and Biswas, A., 2002a, “Extracting Copper from Copper-Iron-Sulphide Ores,” Extractive Metallurgy of Copper, Elsevier, Oxford, UK, pp. 1–10.

    Google Scholar 

  • Davenport, W., King, M., Schlesinger, M., and Biswas, A., 2002b, “Batch converting of copper matte,” Extractive Metallurgy of Copper, Elsevier, Oxford, UK, Chap. 9, pp. 131–154, https://doi.org/10.1016/b978-008044029-3/50012-5.

    Chapter  Google Scholar 

  • Davenport, W., King, M., Schlesinger, M., and Biswas, A., 2002c, “Continuous converting,” Extractive Metallurgy of Copper, Elsevier, Oxford, UK, Chap. 10, pp. 155–172, https://doi.org/10.1016/b978-008044029-3/50013-7.

    Chapter  Google Scholar 

  • Davenport, W., King, M., Schlesinger, M., and Biswas, A., 2002d, “Fire refining and casting of anodes: Sulfur and oxygen removal,” Extractive Metallurgy of Copper, Elsevier, Oxford, UK, Chap. 15, pp. 247–263, https://doi.org/10.1016/b978-008044029-3/50018-6.

    Chapter  Google Scholar 

  • Degterov, S., and Pelton, A., 1999, “A thermodynamic database for copper smelting and converting,” Metallurgical and Materials Transactions B, Vol. 30, pp. 661–669, https://doi.org/10.1007/s11663-999-0027-4.

    Article  Google Scholar 

  • Dettmer, H., 2007, “Introduction to the theory of constraints,” The LogicalThinking Process: A Systems Approach to Complex Problem Solving, ASQ Quality Press, Milwakee, WI, Chap. 1, pp. 3–30.

    Google Scholar 

  • Devia, M., Wilkomirsky, I., and Parra, R., 2012, “Roasting kinetics of high-arsenic copper concentrates: a review,” Minerals & Metallurgical Processing, Vol. 29, No. 2, pp. 121–128.

    Google Scholar 

  • Diario Chañarcillo, 2011, “Enami fija su postura ante episodios de contaminación de Fundición Hernán Videla Lira,” [Enami stands its ground following pollution incidents at the Hernán Videla Lira Smelter]. Copiapó, Chile. [In Spanish]

  • Ek, M., and Olsson, P, 2005, “Recent developments on the Peirce-Smith converting process at the Rönnskär smelter,” Converter and Fire Refining Practices (TMS Conference), A. Ross, T. Warner and K. Scholey, eds., The Minerals, Metals and Materials Society, Warrendale, PA, pp. 19–26.

    Google Scholar 

  • Fan, Y, Parra, R., Parada, F, and Wilkomirsky, I., 2006, “Interaction of cupric ferrite, copper matte and slag at 1573 K,” Minerals & Metallurgical Processing, Vol. 23, No. 3, pp. 126–132.

    Google Scholar 

  • Floyd, J., 2005, “Converting an idea into a worldwide business commercializing smelting technology,” Metallurgical and Materials Transactions B, Vol. 36, pp. 557–575, https://doi.org/10.1007/s11663-005-0047-7.

    Article  Google Scholar 

  • Goldratt, E., 2009, “Standing on the shoulders of giants — production concepts versus production applications: the HitachiTool Engineering example,” Gestao e Producao, Vol. 16, No. 3, pp. 333–343.

    Article  Google Scholar 

  • Groover, M., 2000, “Process planning and concurrent engineering,” Automation, Production Systems and Computer-Integrated Manufacturing, Prentice Hall, Upper Saddle River, NJ, Chap. 25, pp. 775–795.

    Google Scholar 

  • Herrera, C., 2014, “Fusión de concentrados en Fundición Hernán Videla Lira,” [Smelting of concentrates at the HernánVidela Lira Smelter]. Enami, Santiago, Chile, pp. 1–22. [In Spanish]

    Google Scholar 

  • Jie, Y, 2013, “Latest development of oxygen bottom-blowing copper smelting technology,” Nickolas Themelis Symposium of Pyrometallurgy and Process Engineering (Copper 2013), R. Bassa, R. Parra, A. Luraschi and S. Demetrio, eds., The Chilean Institute of Mining Engineers, Santiago, Chile, pp. 873–887

    Google Scholar 

  • Kapusta, J., 2004, “JOM world nonferrous smelter survey part I: Copper,” JOM, Vol. 57, No. 2, pp. 19–26, https://doi.org/10.1007/s11837-004-0086-6.

    Google Scholar 

  • Kelton, W., Sadowski, R., and Swets, N., 2007, “Continuous and combined discrete/continuous models,” Simulation with Arena, McGraw-Hill, Cambridge, MA, Chap. 11, pp. 465–503.

    Google Scholar 

  • Kyllo, A., Richards, G., 1998, “Kinetic modeling of minor element behavior in copper converting,” Metallurgical and Materials Transactions B, Vol. 29, pp. 261–286, https://doi.org/10.1007/s11663-998-0029-7.

    Article  Google Scholar 

  • Lazo, P., Curé, M., and Gaete, H., 2006, “Modeling of the sulfur dioxide dispersion in the Puchuncavi city using the program ISC3,” Ingeniare, Vol. 14, No. 3, pp. 229–237.

    Google Scholar 

  • Mackey, P, and Campos, R., 2001, “Modern continuous smelting and converting by bath smelting technology,” Canadian Metallurgical Quarterly, Vol. 40, No. 3, pp. 355–376, https://doi.org/10.1179/cmq.2001.40.3.355.

    Article  Google Scholar 

  • McMeekin, R., Twigge-Molecey, C., and J. Blake, J., 2015, “Project development,” Metallurgical Plant Design, Canadian Institute of Mining Metallurgy and Petroleum, Montreal, Canada, Chap. 5, pp. 87–105.

    Google Scholar 

  • Mineria Chilena, 2014, “Fundiciôn Paipote en la ruta de la modernización,” [Paipote Smelter on the road to modernization]. Santiago, Chile. [In Spanish]

  • Mourtzis, D., Doukas, M., and Bernidaki, D., 2014, “Simulation in manufacturing: Review and challenges,” Precedia CIRP, Vol. 24, pp. 213–229, https://doi.org/10.1016/j.procir.2014.10.032.

    Article  Google Scholar 

  • Navarra, A., 2016, “Automatic scheduling and scientific management of copper smelters,” Transactions of the Institutions of Mining and Metallurgy: Section C, Vol. 125, No. 1, pp. 39–46, https://doi.org/10.1179/1743285515y.0000000018.

    Google Scholar 

  • Navarra, A., 2014, “Discrete event simulation and scheduling algorithms for the development of copper and nickel converting operational modes,” Bill Davenport Honorary Symposium (Conference of Metallurgists), E. Partelpoeg, M. Moats, M. King, D. Jones, E. Ozberk and T. Okabe, eds., Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, Canada, Paper 8311.

    Google Scholar 

  • Navarra, A., and Kapusta, J., 2009, “Decision-making software for the incremental improvement of Peirce-Smith converters,” International Peirce-Smith Converting Centennial Symposium (TMS Conference), J. Kapusta and T. Warner, eds., The Minerals, Metals and Materials Society, Warrendale, PA, pp. 231–250.

    Google Scholar 

  • Navarra, A., Kuan, S., Parra, R., Davis, B., and Mucciardi, F., 2016, “Bottleneck Analysis of Conventional Copper Smelters,” International Conference on Industrial Engineering and Operations Management, A. Ali and A.T. Bon, eds., Industrial Engineering and Operations Management Society, Detroit, MI, pp. 2395–2406.

    Google Scholar 

  • Navarra, A., and Mendoza, O., 2013,“Automatic scheduling of Altonorte operations using greedy algorithms,” NickolasThemelis Symposium of Pyromentallurgy and Process Engineering (Copper 2013), R. Bassa, R. Parra, A. Luraschi and S. Demetrio, eds., The Chilean Institute of Mining Engineers, Santiago, Chile, pp. 223–235.

    Google Scholar 

  • Navarra, A., and Mucciardi, F, 2015, “Discrete event simulation to quantify upgrades of Peirce-Smith converting aisles,” Applications of Computers and Operations Research in the Mineral Industry, S. Bandopadhyay, S. Chatterjee, T. Ghosh and K.V. Raj, eds, Society for Mining, Metallurgy & Exploration, Englewood, CO, pp. 54–64.

    Google Scholar 

  • Navarra, A., Pubill, A., and Kapusta, J., 2012, “Convex projection to estimate heat content of cold charges in Peirce-Smith converting,” Computational Thermodynamics and Kinetics Symposium (TMS Conference), Z. Liu, M. Asta, J. Warren, Y. Wang, R. Arroyave and Y. Wang, eds.,The Minerals, Metals and Materials Society, Warrendale, PA, pp. 151–158.

    Google Scholar 

  • Parra, R., Sbarbaro, D., Verdeja, L., Mochón, J., and Bustinza, I., 2015, “Spectral characterization and image analysis in ferrous and non-ferrous process metallurgy for the design of new sensors for process control,” Torstein Utigard Memorial Symposium (Conference of Metallurgists), M. Muinonen, T. Marin and N. Stubina, eds., Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, Canada, pp. 1–12.

    Google Scholar 

  • Pérez-Fontes, S., Pérez-Tello, M., and Prieto-López, L.O., 2007, “Thermoanalytical study on the oxidation of sulfide minerals at high temperatures,” Minerals & Metallurgical Processing, Vol. 24, No. 2, pp. 275–283.

    Google Scholar 

  • Pérez-Tello, M., Madrid-Ortega, I.M., and Sohn, H.Y., 2008, “Model for the fragmentation of copper matte particles during flash converting,” Minerals & Metallurgical Processing, Vol. 25, No. 1, pp. 53–60.

    Google Scholar 

  • Pérez-Tello, M., Sohn, H.Y., and Löttiger, J., 1999, “Determination of the oxidation characteristics of solid copper,” Minerals & Metallurgical Processing, Vol. 16, No. 2, pp. 1–7.

    Google Scholar 

  • Pradenas, L., Zuñega, J., and Parada, V., 2006, “Codelco, Chile programs its copper-smelting operations,” Interfaces, Vol. 26, No. 4, pp. 296–301, https://doi.org/10.1287/inte.1060.0207.

    Article  Google Scholar 

  • Prietl, T., Filzwieser, A., and Wallner, S., 2005, “Productivity increase in a Peirce-Smith converter using COP KIN and OPC system,” Converter and Fire Refining Practices (TMS Conference), A. Ross, T. Warner and K. Scholey, eds., The Minerals, Metals and Materials Society, Warrendale, PA, pp. 177–190.

    Google Scholar 

  • Rotuska, K., and Chmielewski, T, 2008, “Growing role of solvent extraction in copper ores processing,” Physicochemical Problems of Mineral Processing, Vol. 42, pp. 29–36.

    Google Scholar 

  • Sohn, H., Kang, S., and Chang, J., 2005, “Sulfide smelting fundamentals, technologies and innovations,” Minerals & Metallurgical Processing, Vol. 22, No. 3, pp. 65–76.

    Google Scholar 

  • Swinbourne, D., and Kho, T., 2012, “Computational thermodynamics modeling of minor element distributions during copper flash converting,” Metallurgical and Materials Transactions B, Vol. 43, pp. 823–829, https://doi.org/10.1007/s11663-012-9652-4.

    Article  Google Scholar 

  • Talja, J., Chen, S., Mansikkaviita, H., and Berg, C.G., 2013, “Optimal drying solution for copper concentrate,” Nickolas Themelis Symposium of Pyrometallurgy and Process Engineering (Copper 2013), R. Bassa, R. Parra, A. Luraschi and S. Demetrio, eds., The Chilean Institute of Mining Engineers, Santiago, Chile, pp. 49–60.

    Google Scholar 

  • Vale Canada, 2015, “Environmental Management System and Community Engagement Report,” pp. 1–15.

  • Wheeler, M., and McGinty, J., 2015, “Plant layout and logistics,” Metallurgical Plant aDesign, Canadian Institute of Mining Metallurgy and Petroleum, Montreal, Canada, Chap. 10, pp. 205–240.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Paper number MMP-16-060.

Discussion of this peer-reviewed and approved paper is invited and must be submitted to SME Publications Dept. prior to Nov. 30, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navarra, A., Marambio, H., Oyarzún, F. et al. System dynamics and discrete event simulation of copper smelters. Mining, Metallurgy & Exploration 34, 96–106 (2017). https://doi.org/10.19150/mmp.7510

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.19150/mmp.7510

Key words

Navigation