Advertisement

Mining, Metallurgy & Exploration

, Volume 35, Issue 4, pp 171–175 | Cite as

A strategy to accelerate the bioleaching of chalcopyrite through the goethite process

  • X. Huang
  • H. ZhaoEmail author
  • Y. Zhang
  • R. Liao
  • J. Wang
  • W. Qin
  • G. Qiu
Article

Abstract

Theoretically, controlling redox potential to a relatively low value and inhibiting jarosite formation on the chalcopyrite surface would be an effective strategy to accelerate the bioleaching of chalcopyrite. In this work, using limonite as seed crystals, the effects of the goethite precipitation process on the bioleaching of chalcopyrite were studied for the first time. The bioleaching results showed that the addition of limonite controlled the redox potential in an appropriate range and promoted chalcopyrite dissolution through the removal of ferric (Fe3+) ions. X-ray diffraction and scanning electron microscope analyses indicate that limonite significantly induced the goethite precipitation process and inhibited the production of jarosite. We conclude that promoting the goethite precipitation process with limonite is an effective strategy in accelerating the bioleaching process of chalcopyrite.

Key words

Chalcopyrite Bioleaching Redox potential Limonite Goethite precipitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmadi, A., Schaffie, M., Manafi, Z., and Ranjbar, M., 2010, “Electrochemical bioleaching of high grade chalcopyrite flotation concentrates in a stirred bioreactor,” Hydrometallurgy, Vol. 104, pp. 99–105,  https://doi.org/10.1016/j.hydromet.2010.05.001.CrossRefGoogle Scholar
  2. Brierley, J., and Brierley, C., 1999, “Present and future commercial applications of biohydrometallurgy,” Process Metallurgy, Vol. 9, pp. 81–89,  https://doi.org/10.1016/s1572-4409(99)80007-8.CrossRefGoogle Scholar
  3. Brierley, J., and Brierley, C., 2001, “Present and future commercial applications of biohydrometallurgy,” Hydrometallurgy, Vol. 59, pp. 233–239,  https://doi.org/10.1016/s0304-386x(00)00162-6.CrossRefGoogle Scholar
  4. Chen, J.H., Lan, L.H., and Liao, X.J., 2013, “Depression effect of pseudo glycolythiourea acid in flotation separation of copper-molybdenum,” Transactions of Nonferrous Metals Society of China, Vol. 23, pp. 824–831,  https://doi.org/10.1016/s1003-6326(13)62535-2.CrossRefGoogle Scholar
  5. Claassen, J.O., Meyer, E.H.O., Rennie, J., and Sandenbergh, R.F., 2002, “Iron precipitation from zinc-rich solutions: defining the Zincor Process,” Hydrometallurgy, Vol. 67, pp. 87–108.CrossRefGoogle Scholar
  6. Cordoba, E.M., Munoz, J.A., Blazquez, M.L., Gonzalez, F., and Ballester, A., 2008a, “Leaching of chalcopyrite with ferric ion. Part II: Effect of redox potential,” Hydrometallurgy, Vol. 93, pp 88–96,  https://doi.org/10.1016/j.hydromet.2008.04.016.CrossRefGoogle Scholar
  7. Cordoba, E.M., Munoz, J.A., Blazquez, M.L., Gonzalez, F., and Ballester, A., 2008b, “Leaching of chalcopyrite with ferric ion. Part IV: The role of redox potential in the presence of mesophilic and thermophilic bacteria,” Hydrometallurgy, Vol. 93, pp. 106–115,  https://doi.org/10.1016/j.hydromet.2007.11.005.CrossRefGoogle Scholar
  8. Crundwell, F.K., 2015, “The semiconductor mechanism of dissolution and the pseudo-passivation of chalcopyrite,” Canadian Metallurgical Quarterly, Vol. 54, pp. 279–288,  https://doi.org/10.1179/1879139515y.0000000007.CrossRefGoogle Scholar
  9. Davey, P.T., and Scott, T.R., 1976, “Removal of iron from leach liquors by the “Goethite” process,” Hydrometallurgy, Vol. 2, pp. 25–33,  https://doi.org/10.1016/0304-386x(76)90011-6.CrossRefGoogle Scholar
  10. Dutrizac, J.E., 1979, “The Physical Chemistry of Iron Precipitation in the Zinc Industry.”Google Scholar
  11. Ehrlich, H.L., 2001, “Past, present and future of biohydrometallurgy,” Hydrometallurgy, Vol. 59, pp. 127–134,  https://doi.org/10.1016/s0304-386x(00)00165-1.CrossRefGoogle Scholar
  12. Gericke, M., Govender, Y., and Pinches, A., 2010, “Tank bioleaching of low-grade chalcopyrite concentrates using redox control,” Hydrometallurgy, Vol. 104, pp. 414–419,  https://doi.org/10.1016/j.hydromet.2010.02.024.CrossRefGoogle Scholar
  13. Gu, G., Hu, K., Zhang, X., Xiong, X., and Yang, H., 2013, “The stepwise dissolution of chalcopyrite bioleached by Leptospirillum ferriphilum,” Electrochimica Acta, Vol. 103, pp. 50–57,  https://doi.org/10.1016/j.electacta.2013.04.051.CrossRefGoogle Scholar
  14. Han, H., Sun, W., Hu, Y., Cao, X., Tang, H., Liu, R., and Yue, T., 2016, “Magnetite precipitation for iron removal from nickel-rich solutions in hydrometallurgy process,” Hydrometallurgy, Vol. 165, pp. 318–322,  https://doi.org/10.1016/j.hydromet.2016.01.006.CrossRefGoogle Scholar
  15. Han, H., Sun, W., Hu, Y., Tang, H., and Yue, T., 2015, “Magnetic separation of iron precipitate from nickel sulfate solution by magnetic seeding,” Hydrometallurgy, Vol. 156, 182–187,  https://doi.org/10.1016/j.hydromet.2015.07.001.CrossRefGoogle Scholar
  16. Hiroyoshi, N., Miki, H., Hirajima, T., and Tsunekawa, M., 2000, “A model for ferrous-promoted chalcopyrite leaching,” Hydrometallurgy, Vol. 57, pp. 31–38,  https://doi.org/10.1016/s0304-386x(00)00089-x.CrossRefGoogle Scholar
  17. Ismael, M.R.C., and Carvalho, J.M.R., 2003, “Iron recovery from sulphate leach liquors in zinc hydrometallurgy,” Minerals Engineering, Vol. 16, pp. 31–39,  https://doi.org/10.1016/s0892-6875(02)00310-2.CrossRefGoogle Scholar
  18. Kametani, H., and Aoki, A., 1985, “Effect of suspension potential on the oxidation rate of copper concentrate in a sulfuric acid solution,” Metallurgical Transactions B, Vol. 16, pp. 695–705,  https://doi.org/10.1007/bf02667506.CrossRefGoogle Scholar
  19. Klauber, C., 2008, “A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution,” International Journal of Mineral Processing, Vol. 86, pp. 1–17,  https://doi.org/10.1016/j.minpro.2007.09.003.CrossRefGoogle Scholar
  20. Li, Y., Kawashima, N., Li, J., Chandra, A., and Gerson, A., 2013, “A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite,” Advances in Colloid and Interface Science, Vol. 197, pp. 1–32,  https://doi.org/10.1016/j.cis.2013.03.004.Google Scholar
  21. Liu, H.C., Xia, J.L., and Nie, Z.Y., 2015, “Relatedness of Cu and Fe speciation to chalcopyrite bioleaching by Acidithiobacillus ferrooxidans,” Hydrometallurgy, Vol. 156, pp. 40–46,  https://doi.org/10.1016/j.hydromet.2015.05.013.CrossRefGoogle Scholar
  22. Parker, A., Klauber, C., Kougianos, A., Watling, H., and Van Bronswijk, W., 2003, “An X-ray photoelectron spectroscopy study of the mechanism of oxidative dissolution of chalcopyrite,” Hydrometallurgy, Vol. 71, pp. 265–276,  https://doi.org/10.1016/s0304-386x(03)00165-8.CrossRefGoogle Scholar
  23. Petersen, J., and Dixon, D.G., 2006, “Competitive bioleaching of pyrite and chalcopyrite,” Hydrometallurgy, Vol. 83, pp. 40–49,  https://doi.org/10.1016/j.hydromet.2006.03.036.CrossRefGoogle Scholar
  24. Pinches, A., Gericke, M., and Van Rooyen, J., 2000, “A Method of Operating a Bioleach Process with Control of Redox Potential,” Patent WO 1, A1.Google Scholar
  25. Pradel, J., Castillo, S., Traverse, J.P., Grezesbesset, R., and Darcy, M., 1993, “Ferric hydroxide oxide from the goethite process: characterization and potential use,” Industrial & Engineering Chemistry, Research 32, pp. 1801–1804,  https://doi.org/10.1021/ie00021a001.CrossRefGoogle Scholar
  26. Sandstrom, A., Shchukarev, A., and Paul, J., 2005, “XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential,” Minerals Engineering, Vol. 18, pp. 505–515,  https://doi.org/10.1016/j.mineng.2004.08.004.CrossRefGoogle Scholar
  27. Swarnkar, S., Gupta, B., and Sekharan, R.D., 1996, “Iron control in zinc plant residue leach solution,” Hydrometallurgy, Vol. 42, pp. 21–26,  https://doi.org/10.1016/0304-386x(95)00077-t.CrossRefGoogle Scholar
  28. Third, K., Cord-Ruwisch, R., and Watling, H., 2002, “Control of the redox potential by oxygen limitation improves bacterial leaching of chalcopyrite,” Biotechnology and Bioengineering, Vol. 78, pp. 433–441,  https://doi.org/10.1002/bit.10184.CrossRefGoogle Scholar
  29. Vilcáez, J., Suto, K., and Inoue, C., 2008, “Bioleaching of chalcopyrite with thermophiles: temperature-pH-ORP dependence,” International Journal of Mineral Processing, Vol. 88, pp. 37–44,  https://doi.org/10.1016/j.minpro.2008.06.002.CrossRefGoogle Scholar
  30. Wang, J., Gan, X., Zhao, H., Hu, M., Li, K., Qin, W., and Qiu, G., 2016, “Dissolution and passivation mechanisms of chalcopyrite during bioleaching: DFT calculation, XPS and electrochemistry analysis,” Minerals Engineering, Vol. 98, pp. 264–278,  https://doi.org/10.1016/j.mineng.2016.09.008.CrossRefGoogle Scholar
  31. Watling, H., 2006, “The bioleaching of sulphide minerals with emphasis on copper sulphides—a review,” Hydrometallurgy, Vol. 84, pp. 81–108,  https://doi.org/10.1016/j.hydromet.2006.05.001.CrossRefGoogle Scholar
  32. Watling, H.R., 2013, “Chalcopyrite hydrometallurgy at atmospheric pressure: 1. Review of acidic sulfate, sulfate-chloride and sulfate-nitrate process options,” Hydrometallurgy, Vol. 140, pp. 163–180,  https://doi.org/10.1016/j.hydromet.2013.09.013.CrossRefGoogle Scholar
  33. Yue, T., Han, H., Sun, W., Hu, Y., Chen, P., and Liu, R., 2016, “Low-pH mediated goethite precipitation and nickel loss in nickel hydrometallurgy,” Hydrometallurgy, Vol. 165, pp. 238–243,  https://doi.org/10.1016/j.hydromet.2016.03.004.CrossRefGoogle Scholar
  34. Zhao, H., Gan, X., Wang, J., Tao, L., Qin, W., Qiu, G., and 2017, “Stepwise bioleaching of Cu-Zn mixed ores with comprehensive utilization of silver-bearing solid waste through a new technique process,” Hydrometallurgy, Vol. 171, pp. 374–386,  https://doi.org/10.1016/j.hydromet.2017.06.002.CrossRefGoogle Scholar
  35. Zhao, H., Huang, X., Wang, J., Li, Y., Liao, R., Wang, X., Qiu, X., Xiong, Y., Qin, W., and Qiu, G., 2017, “Comparison of bioleaching and dissolution process of p-type and n-type chalcopyrite,” Minerals Engineering, Vol. 109, pp. 153–161,  https://doi.org/10.1016/j.mineng.2017.03.013.CrossRefGoogle Scholar
  36. Zhao, H., Wang, J., Gan, X., Zheng, X., Tao, L., Hu, M., Li, Y., Qin, W., and Qiu, G., 2015, “Effects of pyrite and bornite on bioleaching of two different types of chalcopyrite in the presence of Leptospirillum ferriphilum,” Bioresource Technology, Vol. 194, pp. 28–35,  https://doi.org/10.1016/j.biortech.2015.07.003.CrossRefGoogle Scholar
  37. Zhao, H., Wang, J., Tao, L., Cao, P., Yang, C., Qin, W., and Qiu, G., 2017, “Roles of oxidants and reductants in bioleaching system of chalcopyrite at normal atmospheric pressure and 45 °C,” International Journal of Mineral Processing, Vol. 162, pp. 81–91,  https://doi.org/10.1016/j.minpro.2017.04.002.CrossRefGoogle Scholar
  38. Zhao, H., Wang, J., Yang, C., Hu, M., Gan, X., Tao, L., Qin, W., and Qiu, G., 2015, “Effect of redox potential on bioleaching of chalcopyrite by moderately thermophilic bacteria: An emphasis on solution compositions,” Hydrometallurgy, Vol. 151, pp. 141–150,  https://doi.org/10.1016/j.hydromet.2014.11.009.CrossRefGoogle Scholar

Copyright information

© The Society for Mining, Metallurgy & Exploration 2018

Authors and Affiliations

  • X. Huang
    • 1
    • 2
  • H. Zhao
    • 1
    • 2
    • 3
    Email author
  • Y. Zhang
    • 1
    • 2
  • R. Liao
    • 1
    • 2
  • J. Wang
    • 1
    • 2
  • W. Qin
    • 1
    • 2
  • G. Qiu
    • 1
    • 2
  1. 1.School of Minerals Processing and BioengineeringCentral South UniversityChangsha, HunanChina
  2. 2.Key Laboratory of Biohydrometallurgy of Ministry of EducationChangsha, HunanChina
  3. 3.State Key Laboratory of Complex Nonferrous Metal Resources Clean UtilizationKunming University of Science and TechnologyKunming, YunnanChina

Personalised recommendations