Advertisement

Minerals & Metallurgical Processing

, Volume 35, Issue 1, pp 24–34 | Cite as

Two-phase optimization methodology for the design of mineral flotation plants, including multispecies and bank or cell models

  • R. Acosta-Flores
  • F. A. Lucay
  • L. A. CisternasEmail author
  • E. D. Gálvez
Special Review Article
  • 1 Downloads

Abstract

Froth flotation processes are carried out in flotation cells that are grouped into banks, and these banks are interconnected, forming a flotation circuit. A literature review shows the existence of papers related to flotation circuit design based on mathematical programming. However, due to the complexity of solving the mathematical model in most of the work, it is considered that a small number of species is present in the feed to the circuit, which differs from practice. In addition, simple bank models are generally used. This paper presents a methodology for designing mineral concentration circuits that overcomes the problems mentioned. It allows the use of more suitable cell or bank models and the inclusion of several species. The methodology is based on two phases. The first phase identifies the set of optimal structures using discrete values of stage recoveries, solving several mixed integer linear programming (MILP) problems. In the second phase, the optimal design for each of the structures obtained in the previous phase is determined using a suitable model for the recovery at each cell or bank, which results in a mixed integer nonlinear programming (MINLP) model. The design of a copper concentration plant with eight species and the design of a zinc concentration plant with three species and five size fractions by species are used to validate the proposed methodology. The structure of the cells in the rougher and cleaner banks deliver structures that are novel.

Key words

Flotation Design Cell model Bank model Optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cisternas, L.A., 1999, “On the synthesis of inorganic chemical and metallurgical processes, review and extension,” Minerals Engineering, Vol. 12, pp. 15–41,  https://doi.org/10.1016/s0892-6875(98)00117-4.CrossRefGoogle Scholar
  2. Cisternas, L.A., Acosta-Flores, R., Lucay, F., and Gálvez, E.D., 2016, “Mineral concentration plants design using rigorous models,” Computer Aided Chemical Engineering, K. Zdravko and B. Miloš, eds., Vol. 38, pp. 1461–1466,  https://doi.org/10.1016/b978-0-444-63428-3.50248-4.CrossRefGoogle Scholar
  3. Cisternas, L.A., Jamett, N., and Galvez, E.D., 2015, “Approximate recovery values for each stage are sufficient to select the concentration circuit structures,” Minerals Engineering, Vol. 83, pp. 175–184,  https://doi.org/10.1016/j.mineng.2015.09.003.CrossRefGoogle Scholar
  4. Cisternas, L.A., Lucay, F., and Gálvez, E.D., 2014, “Effect of the objective function in the design of concentration plants,” Minerals Engineering, Vol. 63, pp. 16–24,  https://doi.org/10.1016/j.mineng.2013.10.007.CrossRefGoogle Scholar
  5. Cisternas, L.A., Mendez, D.A., Galvez, E.D., and Jorquera, R.E., 2006, “A MILP model for design of flotation circuits with bank/column and regrind/no regrind selection,” International Journal of Mineral Processing, Vol. 79, pp. 253–263,  https://doi.org/10.1016/j.minpro.2006.03.005.CrossRefGoogle Scholar
  6. GAMS Development Corp., 2017, “General Algebraic Modeling System (GAMS) Release 24.8.3,” Washington, DC.Google Scholar
  7. Ghobadi, P., Yahyaei, M., and Banisi, S., 2011, “Optimization of the performance of flotation circuits using a genetic algorithm oriented by process-based rules,” International Journal of Mineral Processing, Vol. 98, pp. 174–181,  https://doi.org/10.1016/j.minpro.2010.11.009.CrossRefGoogle Scholar
  8. Gorain, B.K., Franzidis, J.P., and Manlapig, E.V., 1997, “Studies on impeller type, impeller speed and air flow rate in an industrial scale flotation cell. Part 4: Effect of bubble surface area flux on flotation performance,” Minerals Engineering, Vol. 10, pp. 367–379,  https://doi.org/10.1016/s0892-6875(97)00014-9.CrossRefGoogle Scholar
  9. Gorain, B.K., Franzidis, J.P., and Manlapig, E.V., 1999, “The empirical prediction of bubble surface area flux in mechanical flotation cells from cell design and operating data,” Minerals Engineering, Vol. 12, pp. 309–322,  https://doi.org/10.1016/s0892-6875(99)00008-4.CrossRefGoogle Scholar
  10. Guria, C., Verma, M., Gupta, S.K., and Mehrotra, S.P., 2005a, “Simultaneous optimization of the performance of flotation circuits and their simplification using the jumping gene adaptations of genetic algorithm,” International Journal of Mineral Processing, Vol. 77, pp. 165–185,  https://doi.org/10.1016/j.minpro.2005.06.003.CrossRefGoogle Scholar
  11. Guria, C., Verma, M., Mehrotra, S.P., and Gupta, S.K., 2005b, “Multi-objective optimal synthesis and design of froth flotation circuits for mineral processing, using the jumping gene adaptation of genetic algorithm,” Industrial and Engineering Chemistry Research, Vol. 44, pp. 2621–2633,  https://doi.org/10.1021/ie049706i.CrossRefGoogle Scholar
  12. Gupta, A., and Yan, D.S., 2006, Mineral Processing Design and Operation. An Introduction, Elsevier B.V., Amsterdam.Google Scholar
  13. Hu, W., Hadler, K., Neethling, S., and Cilliers, J., 2013, “Determining flotation circuit layout using genetic algorithms with pulp and froth models,” Chemical Engineering Science, Vol. 102, pp. 32–41,  https://doi.org/10.1016/j.ces.2013.07.045.CrossRefGoogle Scholar
  14. Jamett, N., Cisternas, L.A., and Vielma, J.P., 2015, “Solution strategies to the stochastic design of mineral flotation plants,” Chemical Engineering Science, Vol. 134, pp. 850–860,  https://doi.org/10.1016/j.ces.2015.06.010.CrossRefGoogle Scholar
  15. Jovanovic, I., and Miljanovic, I., 2015, “Modelling of flotation processes by classical mathematical methods–A review,” Archives of Mining Sciences, Vol. 60, No. 4, pp. 905–919,  https://doi.org/10.1515/amsc-2015-0059.CrossRefGoogle Scholar
  16. Maldonado, M., Araya, R., and Finch, J., 2011, “Optimizing flotation bank performance by recovery profiling,” Minerals Engineering, Vol. 24, pp. 939–943,  https://doi.org/10.1016/j.mineng.2011.04.014.CrossRefGoogle Scholar
  17. Maldonado, M., Araya, R., and Finch, J., 2012, “An overview of optimizing strategies for flotation banks,” Minerals, Vol. 2, pp. 258–271,  https://doi.org/10.3390/min2040258.CrossRefGoogle Scholar
  18. Mehrotra, S.P., and Kapur, P.C., 1974, “Optimal-suboptimal synthesis and design of flotation circuits,” Separation Science, Vol. 9, pp. 167–184,  https://doi.org/10.1080/00372367408057055.CrossRefGoogle Scholar
  19. Mendez, D.A., Gálvez, E.D., and Cisternas, L.A., 2009a, “State of the art in the conceptual design of flotation circuits,” International Journal of Mineral Processing, Vol. 90, pp. 1–15,  https://doi.org/10.1016/j.minpro.2008.09.009.CrossRefGoogle Scholar
  20. Méndez, D.A., Gálvez, E.D., and Cisternas, L.A., 2009b, “Modeling of grinding and classification circuits as applied to the design of flotation processes,” Computers and Chemical Engineering, Vol. 33, pp. 97–111,  https://doi.org/10.1016/j.compchemeng.2008.07.008.CrossRefGoogle Scholar
  21. Montenegro, M.R., Gálvez, E.D., and Cisternas, L.A., 2015, “The effects of stage recovery uncertainty in the performance of concentration circuits,” International Journal of Mineral Processing, Vol. 143, pp. 12–17,  https://doi.org/10.1016/j.minpro.2015.08.004.CrossRefGoogle Scholar
  22. Montenegro, M.R., Sepúlveda, F.D., Gálvez, E.D., and Cisternas, L.A., 2013, “Methodology for process analysis and design with multiple objectives under uncertainty: Application to flotation circuits,” International Journal of Mineral Processing, Vol. 118, pp. 15–27,  https://doi.org/10.1016/j.minpro.2012.11.002.CrossRefGoogle Scholar
  23. Noble, A., and Luttrell, G., 2015, “Value-based objective functions applied to circuit analysis,” Minerals & Metallurgical Processing, Vol. 32, No. 1, pp. 45–58.Google Scholar
  24. Reuter, M.A., and Van Deventer, J.S.J., 1990, “The use of linear programming in the optimal design of flotation circuits incorporating regrind mills,” International Journal of Mineral Processing, Vol. 28, pp. 15–43,  https://doi.org/10.1016/0301-7516(90)90025-t.CrossRefGoogle Scholar
  25. Reuter, M.A., van Deventer, J.S.J., Green, J.C.A., and Sinclair, M., 1988, “Optimal design of mineral separation circuits by use of linear programming,” Chemical Engineering Science, Vol. 43, pp. 1039–1049,  https://doi.org/10.1016/0009-2509(88)85066-8.CrossRefGoogle Scholar
  26. Schena, G., Villeneuve, J., and Noël, Y., 1996, “A method for a financially efficient design of cell-based flotation circuits,” International Journal of Mineral Processing, Vol. 46, pp. 1–20,  https://doi.org/10.1016/0301-7516(95)00082-8.CrossRefGoogle Scholar
  27. Shahbazi, B., Rezai, B., Koleini, S.M.J., and Noaparast, M., 2012, “The empirical prediction of gas dispersion parameters on mechanical flotation cells,” Engineering, Vol. 4, No. 1, p. 7,  https://doi.org/10.4236/eng.2012.41003.CrossRefGoogle Scholar
  28. Yianatos, J., and Henríquez, F., 2006, “Short-cut method for flotation rates modelling of industrial flotation banks,” Minerals Engineering, Vol. 19, pp. 1336–1340,  https://doi.org/10.1016/j.mineng.2005.12.010.CrossRefGoogle Scholar
  29. Yingling, J.C., 1993, “Parameter and configuration optimization of flotation circuits, part I. A review of prior work,” International Journal of Mineral Processing, Vol. 38, pp. 21–40,  https://doi.org/10.1016/0301-7516(93)90063-g.CrossRefGoogle Scholar

Copyright information

© The Society for Mining, Metallurgy & Exploration 2018

Authors and Affiliations

  • R. Acosta-Flores
    • 1
  • F. A. Lucay
    • 1
  • L. A. Cisternas
    • 1
    Email author
  • E. D. Gálvez
    • 2
  1. 1.Departamento de Ingeniería Química y Procesos de MineralesUniversidad de AntofagastaAntofagastaChile
  2. 2.Departamento de Ingeniería Metalúrgica y MinasUniversidad Católica del NorteAntofagastaChile

Personalised recommendations