Are school-based measures of walkability and greenness associated with modes of commuting to school? Findings from a student survey in Ontario, Canada

Abstract

Objectives

In Canada, students are increasingly reliant on motorized vehicles to commute to school, and few meet the recommended overall physical activity guidelines. Infrastructure and built environments around schools may promote active commuting to and from school, thereby increasing physical activity. To date, few Canadian studies have examined this research question.

Methods

This study is a cross-sectional analysis of 11,006 students, aged 11–20, who participated in the 2016/2017 Ontario Student Drug Use and Health Survey. The remote sensing-derived Normalized Difference Vegetation Index (NDVI), at a buffer of 500 m from the schools’ locations, was used to characterize greenness, while the 2016 Canadian Active Living Environments (Can-ALE) measure was used for walkability. Students were asked about their mode of regular commuting to school, and to provide information on several socio-demographic variables. Multivariable logistic regression models were used to quantify associations between active commuting and greenness and the Can-ALE. The resulting odds ratios, and their 95% confidence intervals, were adjusted for a series of risk factors that were collected from the survey.

Results

Overall, 21% of students reported active commuting (biking or walking) to school, and this prevalence decreased with increasing age. Students whose schools had higher Can-ALE scores were more likely to be active commuters. Specifically, the adjusted odds ratio (OR) of being an active commuter for schools in the highest quartile of the Can-ALE was 2.11 (95% CI = 1.64, 2.72) when compared with those in the lowest. For children, aged 11–14 years, who attended schools in high dwelling density areas, a higher odds of active commuting was observed among those in the upper quartile of greenness relative to the lowest (OR = 1.41; 95% CI = 0.92, 2.15). In contrast, for lower dwelling density areas, greenness was inversely associated with active commuting across all ages.

Conclusion

Our findings suggest that students attending schools with higher Can-ALE scores are more likely to actively commute to school, and that positive impacts of greenness on active commuting are evident only in younger children in more densely populated areas. Future studies should collect more detailed data on residential measures of the built environment, safety, distance between home and school, and mixed modes of commuting behaviours.

Résumé

Objectifs

Au Canada, les élèves comptent de plus en plus sur les véhicules à moteur pour faire le trajet entre la maison et l’école, et ils sont peu nombreux à avoir des niveaux d’activité physique globaux conformes aux recommandations des lignes directrices. Les infrastructures et les milieux bâtis autour des écoles pourraient promouvoir les déplacements actifs entre la maison et l’école, faisant ainsi augmenter l’activité physique. Jusqu’à maintenant toutefois, très peu d’études canadiennes ont examiné cette question de recherche.

Méthode

La présente étude est une analyse transversale de 11 006 élèves de 11 à 20 ans ayant participé au Sondage sur la consommation de drogues et la santé des élèves de l’Ontario en 2016-2017. L’indice de végétation par différence normalisée (IVDN) dérivé par télédétection, utilisé dans un rayon de 500 m des établissements scolaires, a servi à caractériser la verdure, et l’indice d’accessibilité à la vie active dans les milieux de vie au Canada (AVA-Can) a servi à caractériser la marchabilité. Les élèves ont répondu à une question sur leur mode de transport habituel pour se rendre à l’école et donné des informations sur plusieurs variables sociodémographiques. Des modèles de régression logistique multivariée ont servi à chiffrer les associations entre les déplacements actifs, la verdure et l’AVA-Can. Les rapports de cotes ainsi obtenus, et leurs intervalles de confiance de 95 %, ont été ajustés en fonction d’une série de facteurs de risque retracés dans l’enquête.

Résultats

Dans l’ensemble, 21 % des élèves ont dit utiliser un mode de déplacement actif (vélo ou marche) pour se rendre à l’école, et cette prévalence était inversement liée à l’âge. Les élèves dont les écoles avaient un indice Can-ALE élevé étaient plus susceptibles d’employer un mode de transport actif. Spécifiquement, le rapport de cotes (RC) ajusté pour le fait de se rendre à l’école par un mode de transport actif dans le quartile supérieur de l’indice Can-ALE était de 2,11 (IC de 95 % = 1,64, 2,72) comparativement au quartile inférieur. Pour les enfants (11 à 14 ans) fréquentant des écoles dans des zones à forte densité d’habitation, des probabilités plus élevées de déplacements actifs ont été observées chez ceux du quartile de verdure supérieur que chez ceux du quartile inférieur (RC = 1,41; IC de 95 % = 0,92, 2,15). Par contre, dans les zones à faible densité d’habitation, la verdure étaient inversement associée aux déplacements actifs, à tout âge.

Conclusion

Nos constatations indiquent que les élèves fréquentant des écoles dont l’indice Can-ALE est élevé sont plus susceptibles d’utiliser un mode de déplacement actif pour se rendre à l’école, et que l’effet positif de la verdure n’est manifeste que chez les jeunes enfants, dans les zones urbaines densément peuplées. Les études futures devraient obtenir des données plus détaillées sur les indicateurs résidentiels du milieu bâti, la sécurité, la distance entre la maison et l’école et les modes de déplacement mixtes.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Aarts, M., Mathijssen, J. J. P., Van Oers, J. A. M., & Schuit, A. J. (2013). Associations between environmental characteristics and active commuting to school among children: A cross-sectional study. International Journal of Behavioral Medicine, 20, 538–555.

    Article  Google Scholar 

  2. Barnett, A., et al. (2019). Predictors of healthier and more sustainable school travel mode profiles among Hong Kong adolescents. International Journal of Behavioral Nutrition and Physical Activity, 16(48), 1–16.

    Google Scholar 

  3. Benjamin-Neelon, S. E., Platt, A., Armstrong, S., Neelon, B., & Jimenez-cruz, A. (2019). Greenspace, physical activity, and BMI in children from two cities in northern Mexico. Preventive Medicine Reports, 14(September 2018), 100870. https://doi.org/10.1016/j.pmedr.2019.100870.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Boak, A., Hamilton, H.., Adlaf, E.M., Henderson, J., & Mann, R.. (2018). The mental health and well-being of Ontario students, 1991-2017: Detailed findings from the Ontario Student Drug Use and Health Survey (OSDUHS) (CAMH Research Document Series No. 47). Toronto, ON.

  5. Booth, F., Roberts, K. C., & Laye, M. (2012). Lack of exercise is a major cause of chronic diseases. Comprehensive Physiology, 2(2), 1143–1211.

    PubMed  PubMed Central  Google Scholar 

  6. Bringolf-Isler, B., et al. (2018). Sedentary behaviour in Swiss children and adolescents: Disentangling associations with the perceived and objectively measured environment. International Journal of Environmental Research and Public Health, 15(918), 1–16.

    Google Scholar 

  7. Buliung, R. N., Mitra, R., & Faulkner, G. (2009). Active school transportation in the Greater Toronto Area, Canada: an exploration of trends in space and time (1986–2006). Preventive Medicine, 48(6), 507–512. https://doi.org/10.1016/j.ypmed.2009.03.001.

  8. CAMH. (2020). The Ontario Student Drug Use and Health Survey (OSDUHS). Center for Addition and Mental health. Available at: https://www.camh.ca/en/science-and-research/institutes-and-centres/institute-for-mental-health-policy-research/ontario-student-drug-use-and-health-survey%2D%2D-osduhs. Accessed 24 Jan 2020.

  9. CANUE. (2020). CANUE data. Available at: https://canue.ca/data/. Accessed 24 Aug 2020.

  10. Carver, A., et al. (2019). How are the built environment and household travel characteristics associated with children’s active transport in Melbourne, Australia? Journal of Transport and Health, 12(January), 115–129. https://doi.org/10.1016/j.jth.2019.01.003.

    Article  Google Scholar 

  11. Cerin, E., Nathan, A., van Cauwenberg, J., Barnett, D. W., & Barnett, A. (2017). The neighbourhood physical environment and active travel in older adults: A systematic review and meta-analysis. International Journal of Behavioral Nutrition and Physical Activity, 14(1), 1–23.

    Article  Google Scholar 

  12. Christiansen, L. B., et al. (2014). School site walkability and active school transport – association, mediation and moderation. Journal of Transport Geography, 34, 7–15. https://doi.org/10.1016/j.jtrangeo.2013.10.012.

  13. Colley, R. C., Christidis, T., Michaud, I., Tjepkema, M., & Ross, N. A. (2019). An examination of the associations between walkable neighbourhoods and obesity and self-rated health in Canadians. Health Reports, 30(9), 14–24.

    PubMed  Google Scholar 

  14. Cozma, I., Kukaswadia, A., Janssen, I., Craig, W., & Pickett, W. (2015). Active transportation and bullying in Canadian schoolchildren: A cross-sectional study. BMC Public Health, 15(99), 1–7.

  15. DMTI, & Spatial Inc. (2016). CanMap Postal Code Suite v2016.3. Markham, ON, Canada: [Computer file] DMTI Spatial Inc.

    Google Scholar 

  16. Ewing, R., Schroeer, W., & Greene, W. (2004). School location and student travel: Analysis of factors affecting mode choice. Journal of the Transportation Record, 1895, 55–63.

    Article  Google Scholar 

  17. Gamache, P., Hamel, D., & Pampalon, R. (2017). The material and social deprivation index: A summary. Institut national de sante publique Québec. Available at: www.inspq.qc.ca/en/publications/2639. Accessed 15 July 2020.

  18. Giles-Corti, B., et al. (2011). School site and the potential to walk to school: The impact of street connectivity and traffic exposure in school neighborhoods. Health & Place, 17(2), 545–550. https://doi.org/10.1016/j.healthplace.2010.12.011.

    Article  Google Scholar 

  19. Gorelick, N., et al. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031.

    Article  Google Scholar 

  20. Grigsby-Toussaint, D. S., Chi, S. H., & Fiese, B. H. (2011). Where they live, how they play: Neighborhood greenness and outdoor physical activity among preschoolers. International Journal of Health Geographics, 10(1), 66 Available at: http://www.ij-healthgeographics.com/content/10/1/66.

    Article  Google Scholar 

  21. Helbich, M., et al. (2016). Natural and built environmental exposures on children’s active school travel: A Dutch global positioning system-based cross-sectional study. Health & Place, 39, 101–109. https://doi.org/10.1016/j.healthplace.2016.03.003.

    Article  Google Scholar 

  22. Herrmann, T., et al. (2019). A pan-Canadian measure of active living environments using open data. Health Reports, Statistics Canada, 30(5), 16–25.

    Google Scholar 

  23. James, P., et al. (2017). Interrelationships between walkability, air pollution, greenness, and body mass index. Epidemiology, 28(6), 780–788.

    Article  Google Scholar 

  24. Jauregui, A., et al. (2016). A multisite study of environmental correlates of active commuting to school in Mexican children. Journal of Physical Activity & Health, 13, 325–332.

    Article  Google Scholar 

  25. Larsen, K., et al. (2009). The influence of the physical environment and sociodemographic characteristics on children’s mode of travel to and from school. American Journal of Public Health, 99(3), 520–526.

    Article  Google Scholar 

  26. Leon, A. (1998). In A. Bellack & M. Hersen (Eds.), Chapter 3.12 - Descriptive and inferential statistics in comprehensive clinical psychology. Pergamon. Available at: http://www.sciencedirect.com/science/article/pii/B0080427073002649. Accessed 25 Jan 2020.

  27. Lukmanji, A., Williams, J. V. A., Bulloch, A. G. M., Dores, A. K., & Patten, S. B. (2020). The association of active living environments and mental health: a Canadian epidemiological analysis. International Journal of Environmental Research and Public Health, 17(6), 1–12. https://doi.org/10.3390/ijerph17061910.

    Article  Google Scholar 

  28. Macdonald, L., Mccrorie, P., Nicholls, N., & Olsen, J. R. (2019). Active commute to school: does distance from school or walkability of the home neighbourhood matter ? A national sectional study of children aged 10–11 years, Scotland, UK. BMJ Open, 9(e033628), 1–10.

    CAS  Google Scholar 

  29. McCormack, G. R., et al. (2019). A scoping review on the relations between urban form and health: A focus on Canadian quantitative evidence. Health Promotion and Chronic Disease Prevention in Canada, 39(5), 187–200.

    Article  Google Scholar 

  30. McDonald, N. C. (2007). Travel and the social environment : Evidence from Alameda County, California. Transportation Research Part D, 12, 53–63.

    Article  Google Scholar 

  31. Metrolinx. (2015). School travel in the GTHA: A report on trends. Available at: https://www.publications.gov.on.ca/browse-catalogues/monthly-librarychecklist/checklist-november-2018/school-travel-in-the-gtha-a-report-on-trends. Accessed 21 Aug 2020.

  32. Oliver, M., et al. (2014). Environmental and socio-demographic associates of children’s active transport to school: A cross-sectional investigation from the URBAN Study. International Journal of Behavioral Nutrition and Physical Activity, 11(70), 1–12.

    Google Scholar 

  33. Pampalon, R., et al. (2012). An area-based material and social deprivation index for public health in Québec and Canada. Canadian Journal of Public Health, 103, 17–22.

    Article  Google Scholar 

  34. Potoglou, D., & Arslangulova, B. (2017). Factors influencing active travel to primary and secondary schools in Wales. Transportation Planning and Technology, 40(1), 80–99.

    Article  Google Scholar 

  35. Public Health Agency of Canada. (2016). How healthly are Canadians? A trend analysis of the health of Canadians from a healthy living and chronic disease perspective. Available at: https://www.canada.ca/content/dam/phac-aspc/documents/services/publications/healthy-living/how-healthy-canadians/pub1-eng.pdf. Accessed 30 Oct 2019.

  36. Robinson, N. P., et al. (2017). A dynamic Landsat derived Normalized Difference Vegetation Index (NDVI ) product for the conterminous United States. Remote Sensing, 9(863), 1–14.

  37. Ross, N., Wasfi, R., Herrmann, T., & Gleckner, W. (2018). Canadian Active Living Environments Database (Can-ALE) user manual & technical document. Geo-Social Determinants of Health Research Group, Department of Geography, McGill University. Available at: http://canue.ca/wp-content/uploads/2018/03/CanALE_UserGuide.pdf. Accessed 3 Jan 2020.

  38. Saelens, B. E., Sallis, J. F., & Frank, L. D. (2003). Environmental correlates of walking and cycling: Findings from the transportation, urban design, and planning literatures. Annals of Behavioral Medicine, 25(2), 80–91.

    Article  Google Scholar 

  39. Smith, M., et al. (2017). Systematic literature review of built environment effects on physical activity and active transport - an update and new findings on health equity. International Journal of Behavioral Nutrition and Physical Activity, 14(158), 1–27.

    Google Scholar 

  40. Statistics Canada. (2016). Population of census metropolitan areas 2016. Government of Canada. Available at: https://www.statcan.gc.ca/tablestableaux/sum-som/l01/cst01/demo05a-eng.htm. Accessed 13 Nov 2019.

  41. Statistics Canada. (2017). Boundary files, reference guide, census 2016 (catalogue 92-160-G). Ottawa. Available at: https://www150.statcan.gc.ca/n1/pub/92-160-g/92-160-g2016002-eng.htm. Accessed 19 Jan 2020.

  42. Susilo, Y. O., & Waygood, E. O. D. (2012). A long term analysis of the mechanisms underlying children’s activity-travel engagements in the Osaka metropolitan area. Journal of Transport Geography, 20(1), 41–50. https://doi.org/10.1016/j.jtrangeo.2011.07.006.

    Article  Google Scholar 

  43. Trapp, G. S. A., et al. (2012). Increasing children’s physical activity: Individual, social, and environmental factors associated with walking to and from school. Health Education and Behaviour, 39(2). https://doi.org/10.1177/1090198111423272.

  44. United States Geological Survey. (2015). Landsat 8 Greenest-Pixel TOA Reflectance Composite, 2013 to 2015 [Data file]. Reston: US Geological Survey. Available at: https://explorer.earthengine.google.com/#detail/%0ALANDSAT%2FLC8_L1T_ANNUAL_GREENEST_TOA%0A. Accessed 15 July 2017.

  45. United States Geological Survey. (2017). Landsat 8 TOA reflectance (Orthorectified), 2013 to 2017 [data file]. Reston: US Geological Survey. Available at: https://explorer.earthengine.google.com/#detail/%0ALANDSAT%2FLC8_L1T_TOA. Accessed 27 Jan 2017.

  46. Veitch, J., et al. (2017). What predicts children’s active transport and independent mobility in disadvantaged neighborhoods? Health & Place, 44(January), 103–109. https://doi.org/10.1016/j.healthplace.2017.02.003.

    CAS  Article  Google Scholar 

  47. Villeneuve, P. J., et al. (2018). Comparing the normalized difference vegetation index with the Google Street view measure of vegetation to assess associations between greenness, walkability, recreational physical activity, and health in Ottawa, Canada. International Journal of Environmental Research and Public Health, 15(1719), 1–16. https://doi.org/10.3390/ijerph15081719.

    Article  Google Scholar 

  48. Wang, L., & Wen, C. (2017). The relationship between the neighborhood built environment and active transportation among adults: A systematic literature review. Urban Science, 1(29), 1–19. https://doi.org/10.3390/urbansci1030029.

    Article  Google Scholar 

  49. Warburton, D. E. R., Nicol, C. W., & Bredin, S. S. D. (2006). Health benefits of physical activity: The evidence. CMAJ, 174(6), 801–809.

    Article  Google Scholar 

  50. Wong, B. Y., Faulkner, G., Buliung, R., & Irving, H. (2011). Mode shifting in school travel mode: Examining the prevalence and correlates of active school transport in Ontario, Canada. BMC Public Health, 11(618), 1–12.

    Google Scholar 

Download references

Acknowledgements

We thank CANUE (Canadian Urban Environmental Health Research Consortium) for providing the following built environment data: i) NDVI metrics, indexed to DMTI Spatial Inc. postal codes; ii) Canadian Active Living Environments Index (Can-ALE), indexed to DMTI Spatial Inc. postal codes; and iii) Material and Social Deprivation Indices (MSDI), indexed to DMTI Spatial Inc. postal codes. The Material and Social Deprivation Indices (MSDI) used by CANUE were provided by: Institut National de Santé Publique du Québec (INSPQ). Indices were compiled for 1991, 1996, 2001 and 2011 Census data by the Bureau d’information et d’études en santé des populations (BIESP). [online] https://www.inspq.qc.ca/en/information-management-and-analysis/deprivation-index. We would like to acknowledge the Institute for Social Research at York University for overseeing OSDUHS data collection. We would also like to thank the Health Promotion and Chronic Disease Prevention Branch of the Public Health Agency of Canada for funding the study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Susanna Abraham Cottagiri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 38 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cottagiri, S.A., De Groh, M., Srugo, S.A. et al. Are school-based measures of walkability and greenness associated with modes of commuting to school? Findings from a student survey in Ontario, Canada. Can J Public Health 112, 331–341 (2021). https://doi.org/10.17269/s41997-020-00440-0

Download citation

Keywords

  • Active commuting
  • Youth
  • Greenness
  • Active living environments
  • Survey

Mots-clés

  • Déplacements actifs
  • jeunes
  • verdure
  • milieux favorables à une vie active
  • enquête