Skip to main content
Log in

Examining weather-related factors on physical activity levels of children from rural communities

  • Quantitative Research
  • Published:
Canadian Journal of Public Health Aims and scope Submit manuscript

Abstract

Objective

The objective was to examine the influence of weather on moderate-to-vigorous physical activity (MVPA) and light physical activity (LPA) levels of children aged 8–14 years from rural communities, an understudied Canadian population.

Methods

Children (n = 90) from four communities in rural Northwestern Ontario participated in this study between September and December 2016. Children’s MVPA and LPA were measured using an Actical accelerometer and demographic data were gathered from surveys of children and their parents. Weather data were collected from the closest weather station. Cross-classified regression models were used to assess the relationship between weather and children’s MVPA and LPA.

Results

Boys accumulated more MVPA than girls (b = 26.38, p < 0.01), children were more active on weekdays as compared with weekends (b = − 16.23, p < 0.01), children were less active on days with precipitation (b = − 22.88, p < 0.01), and higher temperature led to a significant increase in MVPA (b = 1.33, p  < 0.01). As children aged, they accumulated less LPA (b = − 9.36, p < 0.01) and children who perceived they had higher levels of physical functioning got more LPA (b = 25.18, p = 0.02). Similar to MVPA, children had higher levels of LPA on weekdays (b = − 37.24, p < 0.01) as compared to weekend days and children accumulated less LPA (b = −50.01, p < 0.01) on days with rain.

Conclusion

The study findings indicate that weather influences rural children’s MVPA and LPA. Future research is necessary to incorporate these findings into interventions to increase rural children’s overall PA levels and improve their overall health.

Résumé

Objectif

Examiner l’influence de la météo sur les niveaux d’activité physique modérée à vigoureuse (APMV) et d’activité physique légère (APL) des enfants de 8 à 14 ans vivant en milieu rural, une population canadienne sous-étudiée.

Méthode

Des enfants (n = 90) de quatre communautés rurales du Nord-Ouest de l’Ontario ont participé à l’étude entre septembre et décembre 2016. Leurs niveaux d’APMV et d’APL ont été mesurés à l’aide d’un accéléromètre de marque Actical, et leurs données démographiques ont été obtenues en sondant les enfants et leurs parents. Les données météorologiques ont été obtenues auprès de la station météorologique la plus proche. Des modèles de régression recoupés ont servi à analyser la relation entre la météo et l’APMV et l’APL des enfants.

Résultats

Les garçons ont accumulé plus d’APMV que les filles (b = 26,38 p < 0,01); les enfants étaient plus actifs les jours de semaine que les fins de semaine (b = -16,23 p < 0,01); les enfants étaient moins actifs les jours avec précipitations (b = -22,88 p  < 0,01); et les températures élevées étaient associées à une augmentation significative de l’APMV (b = 1,33 p < 0,01). En grandissant, les enfants accumulaient moins d’APL (b = -9,36 p < 0,01) et les enfants qui pensaient avoir des niveaux d’activité physique plus élevés accumulaient plus d’APL (b = 25,18 p = 0,02). Comme pour l’APMV, les enfants avaient des niveaux d’APL plus élevés les jours de semaine (b = -37,24 p < 0,01) que les fins de semaine, et les enfants accumulaient moins d’APL (b = -50,01 p < 0,01) les jours de pluie.

Conclusion

Les constatations de l’étude montrent que la météo influence l’APMV et l’APL des enfants en milieu rural. Il faudrait pousser la recherche pour intégrer ces constatations dans des interventions pour faire augmenter les niveaux d’activité physique globaux des enfants en milieu rural et améliorer leur santé globale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aadland, E., Andersen, L. B., Anderssen, S. A., & Resaland, G. K. (2018). A comparison of 10 accelerometer non-wear time criteria and logbooks in children. BMC Public Health, 1–9.

  • Belanger, K., Barnes, J. D., Longmuir, P. E., Anderson, K. D., Bruner, B., Copeland, J. L., Gregg, M. J., Hall, N., Kolen, A. M., Lane, K. N., Law, B., Macdonald, D. J., Martin, L. J., Saunders, T. J., Sheehan, D., Stone, M., Woodruff, S. J., & Tremblay, M. S. (2018). The relationship between physical literacy scores and adherence to Canadian physical activity and sedentary behaviour guidelines. BMC Public Health, 18(Suppl 2).

  • Biddle, S. J. H., Atkin, A. J., Cavill, N., & Foster, C. (2011). Correlates of physical activity in youth: a review of quantitative systematic reviews. Int Rev Sport Exerc Psychol, 4(1), 25–49. https://doi.org/10.1080/1750984X.2010.548528.

    Article  Google Scholar 

  • Cerin, E., Saelens, B. E., Sallis, J. F., & Frank, L. D. (2006). Neighborhood environment walkability scale: validity and development of a short form. Med Sci Sports Exerc, 38(9), 1682–1691. https://doi.org/10.1249/01.mss.0000227639.83607.4d.

    Article  PubMed  Google Scholar 

  • Clark, A. F., Wilk, P., Mitchell, C. A., Smith, C., Archer, J., & Gilliland, J. A. (2018). Examining how neighborhood socioeconomic status, geographic accessibility, and informational accessibility influence the uptake of a free population-level physical activity intervention for children. Am J Health Promot, 32(2), 315–324. https://doi.org/10.1177/0890117117718433.

    Article  PubMed  Google Scholar 

  • Colley, R. C., Garriguet, D., Janssen, I., Craig, C. L., Clarke, J., & Tremblay, M. S. (2011). Physical activity of Canadian children and youth: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep, 22(1), 15–23. https://doi.org/10.1016/j.yspm.2011.03.006.

    Article  PubMed  Google Scholar 

  • Comte, M., Hobin, E., Majumdar, S. R., Plotnikoff, R. C., Ball, G. D. C., & McGavock, J. (2013). Patterns of weekday and weekend physical activity in youth in 2 Canadian provinces. Appl Physiol Nutr Metab, 38(2), 115–119. https://doi.org/10.1139/apnm-2012-0100.

  • Edwardson, C. L., & Gorely, T. (2010). Epoch length and its effect on physical activity intensity. Med Sci Sports Exerc, 928–934. https://doi.org/10.1249/MSS.0b013e3181c301f5.

  • Estabrooks, P., Lee, R., & Gyurcsik, N. (2003). Resources for physical activity participation: does availability and accessibility differ by neighborhood socioeconomic status? Ann Behav Med, 25(2), 80–91.

  • Harrison, F., Jones, A. P., Bentham, G., Van Sluijs, E. M. F., Cassidy, A., & Griffin, S. J. (2011). The impact of rainfall and school break time policies on physical activity in 9-10 year old British children: a repeated measures study. Int J Behav Nutr Phys Act, 8(1), 47. https://doi.org/10.1186/1479-5868-8-47.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis, L. K., Maher, C., Belanger, K., Tremblay, M., Chaput, JP., & Olds, T. (2016). At the mercy of the gods: associations between weather, physical activity, and sedentary time in children. Pediatr Exerc Sci, 152–163.

  • Loebach, J. E., & Gilliland, J. A. (2014). Free range kids? Using GPS-derived activity spaces to examine children’s neighborhood activity and mobility. Environ Behav, 48(3), 421–453.

  • McMillan, R., Mcisaac, M., & Janssen, I. (2016). Family structure as a correlate of organized sport participation among youth. PLoS One, 11(2), 1–12. https://doi.org/10.1371/journal.pone.0147403.

    Article  CAS  Google Scholar 

  • Mitchell, C, Clark, A. F., & Gilliland J. A. (2016). Built environment influences of children’s physical activity: Examining differences by neighbourhood size and sex. Int J Environ Res Public Health, 13(1), 130.

  • Nykiforuk, C. I. J., Atkey, K., Brown, S., Caldwell, W., Galloway, T., Gilliland, J., Kongats, K., McGavock, J., & Raine, K. D. (2018). Promotion of physical activity in rural, remote and northern settings: a Canadian call to action. Health Promot Chronic Dis Prev Can, 38(11), 419–435. https://doi.org/10.24095/hpcdp.38.11.03.

  • Oliveira, A. F., Moreira, C., Abreu, S., Mota, J., & Santos, R. (2014). Environmental determinants of physical activity in children: a systematic review. Arch Exec Health Dis, 4(2), 254–261.

  • Poitras, V. J., Gray, C. E., Borghese, M., Carson, V., Chaput, J.-P., Janssen, I., Katzmarzyk, P. T., Pate, R. R., Gorber, S. C., Kho, M. E., Sampson, M., & Tremblay, M. S. (2016). Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl Physiol Nutr Metab, 41.

  • Puyau, M. R., Adolph, A. L., Vohra, F. A., & Butte, N. F. (2002). Validation and Calibration of Physical Activity Monitors in Children. Obesity, 10(3)

  • Remmers, T., Thijs, C., Timperio, A., Salmon, J., Veitch, J., Kremers, S., & Ridgers, N. (2017). Daily weather and children’s physical activity patterns. Med Sci Sports Exerc, 25, 922–929.

  • Rich, C., Griffiths, L. J., & Dezateux, C. (2012). Seasonal variation in accelerometer-determined sedentary behaviour and physical activity in children: a review. Int J Behav Nutr Phys Act, 9(1), 49. https://doi.org/10.1186/1479-5868-9-49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherar, L. B., Griffin, T. P., Ekelund, U., Cooper, A. R., Esliger, D. W., van Sluijs, E. M. F., Andersen, L. B., Cardon, G., Davey, R., Froberg, K., Hallal, P. C., Janz, K. F., Kordas, K., Kriemler, S., Pate, R. R., Puder, J. J., Sardinha, L. B., Timperio, A. F., & Page, A. S. (2016). Association between maternal education and objectively measured physical activity and sedentary time in adolescents. J Epidemiol Community Health, 70(6), 541–548. https://doi.org/10.1136/jech-2015-205763.

  • Taylor, L., Clark, A., Wilk, P., Button, B., & Gilliland, J. (2018). Exploring the effect of perceptions on children’s physical activity in varying geographic contexts: using a structural equation modelling approach to examine a cross-sectional dataset. Children, 5(12), 159. https://doi.org/10.3390/children5120159.

    Article  PubMed Central  Google Scholar 

  • Telford, R. M., Telford, R. D., Olive, L. S., Cochrane, T., & Davey, R. (2016). Why are girls less physically active than boys? Findings from the LOOK longitudinal study. PLoS One, 11(3), 1–11. https://doi.org/10.1371/journal.pone.0150041.

    Article  CAS  Google Scholar 

  • Tremblay, M., Bryan, S., Perez, C., Ardern, C., & Katzmarzyk, P. (2006). Physical activity and immigrant status: evidence from the Canadian community health survey. Can J Public Health, 97(4), 277–282.

  • Tremblay, M. S., Carson, V., Chaput, J. P., Connor Gorber, S., Dinh, T., Duggan, M., ... Zehr, L. (2016). Canadian 24-hour movement guidelines for children and youth: an integration of physical activity, sedentary behaviour, and sleep. Appl Physiol Nutr Metab, 41(6), S311–S327.  https://doi.org/10.1139/apnm-2016-0151.

  • Tucker, P., & Gilliland, J. (2007). The effect of season and weather on physical activity: a systematic review. Public Health, 121(12), 909–922. https://doi.org/10.1016/j.puhe.2007.04.009.

    Article  CAS  PubMed  Google Scholar 

  • Varni, J., Seid, M., & Rode, C. (1999). The PedsQL: measurement model for the pediatric quality of life inventory. Med Care, 37(2).

  • Walia, S., & Leipert, B. (2012). Perceived facilitators and barriers to physical activity for rural youth: an exploratory study using photovoice. Rural Remote Health, 12, 1842.

  • Wilk, P., Clark, A. F., Maltby, A., Smith, C., Tucker, P., & Gilliland, J. A. (2018). Examining individual, interpersonal, and environmental influences on children’s physical activity levels. SSM Popul Health, 4(June 2017), 76–85. https://doi.org/10.1016/j.ssmph.2017.11.004.

  • Yousefian, A., Ziller, E., Swartz, J., & Hartley, D. (2009). Active living for rural youth: addressing physical inactivity in rural communities. J Public Health Manag Pract, 15(3), 223–231. https://doi.org/10.1097/PHH.0b013e3181a11822.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the students, parents, teachers, principals, and school research boards. We would also like to acknowledge the dozens of research assistants from the Human Environments Analysis Lab who helped with the STEAM project.

Funding

The STEAM study was jointly funded by Canadian Institutes of Health Research and the Heart and Stroke Foundation of Canada, with seed funding from the Social Sciences and Humanities Research Council of Canada. Additional support was provided by the Children’s Health Research Institute and the Children’s Health Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason A. Gilliland.

Ethics declarations

Ethics approval was granted by the University of Western Ontario’s Non-Medical Research Ethics Board (NMREB: 108029) and the two local school boards and done in accordance with the 1964 Helsinki declaration.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Button, B.L.G., Shah, T.I., Clark, A.F. et al. Examining weather-related factors on physical activity levels of children from rural communities. Can J Public Health 112, 107–114 (2021). https://doi.org/10.17269/s41997-020-00324-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.17269/s41997-020-00324-3

Keywords

Mots-clés

Navigation