Advertisement

Pulse oximetry screening for critical congenital heart defects in Ontario, Canada: a cost-effectiveness analysis

  • Amit MukerjiEmail author
  • Amy Shafey
  • Amish Jain
  • Eyal Cohen
  • Prakesh S. Shah
  • Beate Sander
  • Vibhuti Shah
Quantitative Research
  • 24 Downloads

Abstract

Objective

Previously conducted cost-effectiveness analyses of pulse oximetry screening (POS) for critical congenital heart defects (CCHDs) have shown it to be a cost-effective endeavour, but the geographical setting of Ontario in relation to its vast yet sparsely populated regions presents unique challenges. The objective of this study was to estimate the cost-effectiveness of POS for CCHD in Ontario, Canada.

Methods

A cost-effectiveness analysis, comparing POS to no POS, was conducted from the Ontario healthcare payer perspective using a Markov model. The base case was defined as a well-appearing newborn at 24 h of age. Outcome measures, including quality-adjusted life months (QALMs), lifetime costs, and incremental cost-effectiveness ratios (ICER) [ΔCost/ΔQALMs], were calculated over a lifetime horizon. All outcomes were discounted at 1.5% per year. Cost-effectiveness was assessed using an a priori ICER threshold of CAD$4166.67 per QALM (equivalent to CAD$50,000 per quality-adjusted life year). Deterministic and probabilistic sensitivity analyses were conducted to assess parameter uncertainty.

Results

Implementation of POS is expected to lead to timely diagnosis of 51 CCHD cases annually. The incremental cost of performing POS was estimated to be $27.27 per screened individual, with a gain of 0.02455 QALMs. This yielded an ICER of CAD$1110.79 per QALM, well below the pre-determined threshold. The probabilistic sensitivity analysis estimated a 92.3% chance of routine implementation of POS being cost-effective.

Conclusion

Routine implementation of POS for CCHD in Ontario is expected to be cost-effective.

Keywords

Saturation screening Cost-utility analysis Health economics Utility Cost-effectiveness threshold 

Résumé

Objectif

Les analyses coût-efficacité du dépistage par oxymétrie de pouls (DOP) des cardiopathies congénitales critiques (CCC) menées antérieurement ont montré que c’est une technique efficace par rapport à son coût, mais l’emplacement géographique de l’Ontario, avec ses vastes régions à faible densité de population, présente des difficultés particulières. Nous avons donc cherché à estimer le rapport coût-efficacité du DOP des CCC en Ontario, au Canada.

Méthode

Une analyse coût-efficacité comparant le DOP à l’absence de DOP a été menée selon la perspective des contribuables payant pour les soins de santé en Ontario à l'aide d’un modèle de Markov. Le scénario de référence était celui d’un nouveau-né apparemment bien portant âgé de 24 heures. Les indicateurs de résultat, dont les mois de vie pondérés par la qualité (MVPQ), les coûts à vie et les rapports coût-efficacité différentiels (RCED) [ΔCoût / ΔMVPQ], ont été calculés pour l’horizon temporel de la vie entière. Tous les résultats ont été actualisés à 1,5 % par année. L’efficacité par rapport au coût a été évaluée a priori à l'aide d’un seuil de RCED de 4 166,67 $CAN par MVPQ (équivalant à 50 000 $CAN par année de vie pondérée par la qualité). Des analyses de sensibilité déterministes et probabilistes ont été menées pour évaluer l’incertitude des paramètres.

Résultats

La mise en œuvre du DOP devrait mener au diagnostic opportun de 51 cas de CCC par année. Le coût différentiel du DOP était estimé à 27,27 $ par personne dépistée, avec un gain de 0,02455 MVPQ. Cela donne un RCED de 1 110,79 $CAN par MVPQ, très en-deçà du seuil prédéterminé. L’analyse de sensibilité probabiliste a estimé à 92,3 % la probabilité que la mise en œuvre systématique du DOP soit efficace par rapport au coût.

Conclusion

On peut s’attendre à ce que la mise en œuvre systématique du DOP pour les CCC en Ontario soit efficace par rapport au coût.

Mots-clés

Dépistage par saturation Analyse coût-utilité Économie de la santé Utilité Seuil coût-efficacité 

Notes

Acknowledgements

We would like to acknowledge Ms. Laura Banfield, MSc, for devising the literature searches, and Drs. Tapas Mondal, Michael Marrin, Stephanie Redpath, Henry Roukema, Catalina Tamayo, Michael Castaldo, Ms. Lynda Aliberti, Ms. Amuna Yacob and Ms. Julie Alyssandratos-Amatuzio for providing data (institutional affiliations and data provided detailed in Supplemental File 2). Finally, we would like to acknowledge Ms. Carrie-Ann Whyte, Senior Analyst, Canadian Institute for Health Information, and Ms. Catherine Riddell, Data request and research coordinator, Better Outcomes Registry and Network, for providing custom-requested data.

Compliance with ethical standards

This study was approved by the Research Oversight and Compliance Office - Human Research Ethics Program, University of Toronto, protocol reference number 32846.

Conflict of interest

The authors declare that they have no conflicts of interest.

Disclosure

Data from this study were presented at Pediatric Academic Societies Conference 2018 (Toronto, Canada). This work was part of the requirements for completion of a Master of Science degree in clinical epidemiology at the Institute for Health Policy, Management and Evaluation, University of Toronto, for A.M. The primary author (A.M.) is a recipient of an early career award from Hamilton Health Sciences Foundation (2019–2021) to support his research, although it did not directly impact the conduct of this study.

Supplementary material

41997_2019_280_MOESM1_ESM.docx (47 kb)
ESM 1 (DOCX 47 kb)
41997_2019_280_MOESM2_ESM.docx (464 kb)
ESM 2 (DOCX 463 kb)

References

  1. Brown, K. L., Ridout, D. A., Hoskote, A., Verhulst, L., Ricci, M., & Bull, C. (2006). Delayed diagnosis of congenital heart disease worsens preoperative condition and outcome of surgery in neonates. Heart, 92, 1298–1302.CrossRefGoogle Scholar
  2. Cohen, E. M. A., Shah, V., Geraghty, M., Sheng, L., Rahman, F., Kumar, M., Jain, A., & Guttmann, A. (2015). Towards pulse oximetry screening in Ontario, Canada: what is the burden of missed critical congenital heart disease? Toronto: Institute for Clinical Evaluative Sciences.Google Scholar
  3. de-Wahl Granelli, A., Wennergren, M., Sandberg, K., et al. (2009). Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ (Clinical Research ed), 338, a3037.CrossRefGoogle Scholar
  4. Ewer, A. K., Furmston, A. T., Middleton, L. J., et al. (2012). Pulse oximetry as a screening test for congenital heart defects in newborn infants: a test accuracy study with evaluation of acceptability and cost-effectiveness. Health Technology Assessment (Winchester), 16, v–xiii 1–184.Google Scholar
  5. Fixler, D. E., Xu, P., Nembhard, W. N., Ethen, M. K., & Canfield, M. A. (2014). Age at referral and mortality from critical congenital heart disease. Pediatrics, 134, e98–e105.CrossRefGoogle Scholar
  6. Griebsch, I., Knowles, R. L., Brown, J., Bull, C., Wren, C., & Dezateux, C. A. (2007). Comparing the clinical and economic effects of clinical examination, pulse oximetry, and echocardiography in newborn screening for congenital heart defects: a probabilistic cost-effectiveness model and value of information analysis. International Journal of Technology Assessment in Health Care, 23, 192–204.CrossRefGoogle Scholar
  7. Griffiths, E., & Vadlamudi, N. (2016). Cadth’s $50,000 cost-effectiveness threshold: fact or fiction? Value in Health, 19, A347.Google Scholar
  8. Health CAfDaTi. (2006). Guidelines for the economic evaluation of health technologies: Canada (3rd ed.).Google Scholar
  9. Heron, M. P., & Smith, B. L. (2007). Deaths: leading causes for 2003. National vital statistics reports: from the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System, 55, 1–92.Google Scholar
  10. Hoffman, J. I., & Kaplan, S. (2002). The incidence of congenital heart disease. Journal of the American College of Cardiology, 39, 1890–1900.CrossRefGoogle Scholar
  11. Karnon, J., & Vanni, T. (2011). Calibrating models in economic evaluation: a comparison of alternative measures of goodness of fit, parameter search strategies and convergence criteria. PharmacoEconomics, 29, 51–62.CrossRefGoogle Scholar
  12. Knowles, R., Griebsch, I., Dezateux, C., Brown, J., Bull, C., & Wren, C. (2005). Newborn screening for congenital heart defects: a systematic review and cost-effectiveness analysis. Health Technology Assessment (Winchester), 9, 1–152 iii-iv.Google Scholar
  13. Lee, M. G. Y., Brizard, C. P., Galati, J. C., et al. (2014). Outcomes of patients born with single-ventricle physiology and aortic arch obstruction: the 26-year Melbourne experience. The Journal of Thoracic and Cardiovascular Surgery, 148, 194–201.CrossRefGoogle Scholar
  14. Mahle, W. T., Martin, G. R., Beekman 3rd, R. H., & Morrow, W. R. (2012). Endorsement of health and human services recommendation for pulse oximetry screening for critical congenital heart disease. Pediatrics, 129, 190–192.CrossRefGoogle Scholar
  15. Meberg, A., Andreassen, A., Brunvand, L., et al. (2009). Pulse oximetry screening as a complementary strategy to detect critical congenital heart defects. Acta Paediatrica (Oslo, Norway : 1992), 98, 682–686.CrossRefGoogle Scholar
  16. Narayen, I. C., Blom, N. A., Ewer, A. K., Vento, M., Manzoni, P., & te Pas, A. B. (2016). Aspects of pulse oximetry screening for critical congenital heart defects: when, how and why? Archives of Disease in Childhood. Fetal and Neonatal Edition, 101, F162–F167.CrossRefGoogle Scholar
  17. Newborn Screening Ontario. (n.d.) URL: https://www.newbornscreening.on.ca/; accessed: September 2017
  18. Ohuchi, H., Kagisaki, K., Miyazaki, A., et al. (2011). Impact of the evolution of the Fontan operation on early and late mortality: a single-center experience of 405 patients over 3 decades. The Annals of Thoracic Surgery, 92, 1457–1466.CrossRefGoogle Scholar
  19. Peterson, C., Grosse, S. D., Oster, M. E., Olney, R. S., & Cassell, C. H. (2013). Cost-effectiveness of routine screening for critical congenital heart disease in US newborns. Pediatrics, 132, e595–e603.CrossRefGoogle Scholar
  20. Plana, M. N., Zamora, J., Suresh, G., Fernandez-Pineda, L., Thangaratinam, S., & Ewer, A. K. (2018). Pulse oximetry screening for critical congenital heart defects. Cochrane Database of Systematic Reviews, 3, Cd011912.PubMedGoogle Scholar
  21. Roberts, T. E., Barton, P. M., Auguste, P. E., Middleton, L. J., Furmston, A. T., & Ewer, A. K. (2012). Pulse oximetry as a screening test for congenital heart defects in newborn infants: a cost-effectiveness analysis. Archives of Disease in Childhood, 97, 221–226.CrossRefGoogle Scholar
  22. Rosano, A., Botto, L. D., Botting, B., & Mastroiacovo, P. (2000). Infant mortality and congenital anomalies from 1950 to 1994: an international perspective. Journal of Epidemiology and Community Health, 54, 660–666.CrossRefGoogle Scholar
  23. Sharland, G. (2012). Fetal cardiac screening and variation in prenatal detection rates of congenital heart disease: why bother with screening at all? Future Cardiology, 8, 189–202.CrossRefGoogle Scholar
  24. Simeone, R. M., Oster, M. E., Cassell, C. H., Armour, B. S., Gray, D. T., & Honein, M. A. (2014). Pediatric inpatient hospital resource use for congenital heart defects. Birth Defects Research. Part A, Clinical and Molecular Teratology, 100, 934–943.CrossRefGoogle Scholar
  25. Thangaratinam, S., Brown, K., Zamora, J., Khan, K. S., & Ewer, A. K. (2012). Pulse oximetry screening for critical congenital heart defects in asymptomatic newborn babies: a systematic review and meta-analysis. Lancet (London, England), 379, 2459–2464.CrossRefGoogle Scholar
  26. van der Linde, D., Konings, E. E., Slager, M. A., et al. (2011). Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. Journal of the American College of Cardiology, 58, 2241–2247.CrossRefGoogle Scholar
  27. Wilson, J. M., & Jungner, Y. G. (1968). Principles and practice of mass screening for disease. Boletin de la Oficina Sanitaria Panamericana Pan American Sanitary Bureau, 65, 281–393.PubMedGoogle Scholar
  28. Wong, K. K., Fournier, A., Fruitman, D. S., et al. (2017). Canadian Cardiovascular Society/Canadian Pediatric Cardiology Association position statement on pulse oximetry screening in newborns to enhance detection of critical congenital heart disease. The Canadian Journal of Cardiology, 33, 199–208.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2019

Authors and Affiliations

  • Amit Mukerji
    • 1
    Email author
  • Amy Shafey
    • 2
  • Amish Jain
    • 3
  • Eyal Cohen
    • 3
    • 4
  • Prakesh S. Shah
    • 3
    • 4
  • Beate Sander
    • 4
    • 5
  • Vibhuti Shah
    • 3
    • 4
  1. 1.Department of PediatricsMcMaster UniversityHamiltonCanada
  2. 2.Department of PediatricsUniversity of CalgaryCalgaryCanada
  3. 3.Department of PediatricsUniversity of TorontoTorontoCanada
  4. 4.Institute of Health Policy, Management and EvaluationUniversity of TorontoTorontoCanada
  5. 5.Toronto General Hospital Research InstituteUniversity Health NetworkTorontoCanada

Personalised recommendations