Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Can local risk of West Nile virus infection be predicted from previous cases? A descriptive study in Quebec, 2011–2016

Abstract

Objectives

This study aimed at (1) describing the local risk of West Nile virus (WNV) infection in humans based on previous case reports and (2) investigating the spatial clustering of cases in the five most affected administrative regions of Quebec, Canada, for the 2011–2016 period.

Methods

Human WNV cases declared to the Ministry of Health and Social Services of Quebec (Ministère de la santé et des services sociaux, MSSS) were retrieved. Incidence risk by age and sex was calculated for the study period. The yearly and monthly occurrence of cases in geographical units (GUs) was described and the probability of observing cases in a GU with cases reported in the previous year or month was assessed. Moran’s I was used to assess global clustering across the study area. Spatial clusters were identified by the Kulldorff scan statistic.

Results

A total of 261 WNV cases were declared to the MSSS between 2011 and 2016 in the study area. Overall, a low percentage of GU with cases reported had additional cases reported over the next month or year. Global spatial clustering was weak but statistically significant (p < 0.05) for 2012 and 2015. For these two years, spatial clusters of high-risk GUs were identified.

Conclusion

Results underline the challenge of predicting the distribution of WNV incidence risk in Quebec based on previous occurrence of human cases. Ongoing research with high spatial resolution entomological data is still necessary to understand the spatial distribution of risk at a local scale.

Résumé

Objectifs

Cette étude visait à (1) décrire le risque local d’infection par le virus du Nil occidental (VNO) chez l’humain à partir des cas rapportés de 2011 à 2016 et (2) estimer le degré d’organisation spatiale de ces cas dans les cinq régions administratives du Québec les plus affectées par le VNO au cours de cette période.

Méthodes

Le risque d’incidence de VNO chez l’humain a été calculé, selon l’âge et le sexe des patients, à partir de la liste des cas déclarés au Ministère de la santé et des services sociaux du Québec (MSSS) au cours de la période à l’étude. La distribution annuelle et mensuelle des cas à travers les unités géographiques (UG) à l’étude a été décrite. La probabilité d’observer des nouveaux cas dans une unité géographique où des cas avaient déjà été rapportés au cours de l’année ou du mois précédent a été calculée. Le degré d’agrégation spatiale a été évalué à l’aide du I de Moran. Les agrégats spatiaux ont été identifiés à l’aide du scan de Kulldorff.

Résultats

Au total, 261 cas de VNO ont été déclarés au MSSS entre 2011 et 2016 dans la zone d’étude. Un faible pourcentage d’UG ayant eu des cas rapportés à une période donnée ont eu des nouveaux cas au cours du mois suivant ou de l’année suivante. Le degré d’agrégation spatiale des cas était faible dans la zone d’étude mais statistiquement significatif (p < 0,05) pour 2012 et 2015. Pour ces deux années, des agrégats spatiaux de cas ont été identifiés.

Conclusion

Il est difficile de prédire la distribution du risque d’incidence du VNO au Québec en se basant sur les cas humains rapportés dans le passé. Des données entomologiques ayant une haute définition spatiale sont requises afin de comprendre la distribution spatiale du risque de VNO à une échelle locale.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abdelrazec, A., Lenhart, S., & Zhu, H. (2014). Transmission dynamics of West Nile virus in mosquitoes and corvids and non-corvids. Journal of Mathematical Biology, 68(6), 1553–1582. https://doi.org/10.1007/s00285-013-0677-3.

  2. Anselin, L., Syabri, I., & Kho, Y. (2006). GeoDa: an introduction to spatial data analysis. Geographical Analysis, 38(1), 5–22.

  3. Bergsman, L. D., Hyman, J. M., & Manore, C. A. (2016). A mathematical model for the spread of West Nile virus in migratory and resident birds. Mathematical Biosciences and Engineering, 13(2), 401–424. https://doi.org/10.3934/mbe.2015009.

  4. Berke, O., & Waller, L. (2010). On the effect of diagnostic misclassification bias on the observed spatial pattern in regional count data--a case study using West Nile virus mortality data from Ontario, 2005. Spatial and Spatiotemporal Epidemiology, 1(2–3), 117–122. https://doi.org/10.1016/j.sste.2010.03.004.

  5. Bivand, R. S., Pebesma, E. J., & Gomez-Rubio, V. (2008). Applied spatial data analaysis with R: Springer.

  6. Bouden, M., Moulin, B., & Gosselin, P. (2008). The geosimulation of West Nile virus propagation: a multi-agent and climate sensitive tool for risk management in public health. International Journal of Health Geographics, 7, 35. https://doi.org/10.1186/1476-072X-7-35.

  7. Chartrand, A., Dion, R., Joncas, D., Fiset, M., & Levac, E. (2018). Surveillance of diseases with mandatory declaration in Quebec - infectious diseases - Nosologic definitions (pp. 51–55). Québec: Government of Quebec.

  8. Chen, C. C., Epp, T., Jenkins, E., Waldner, C., Curry, P. S., & Soos, C. (2012). Predicting weekly variation of Culex tarsalis (Diptera: Culicidae) West Nile virus infection in a newly endemic region, the Canadian prairies. Journal of Medical Entomology, 49(5), 1144–1153.

  9. Crans, W. J. (2004). A classification system for mosquito life cycles: life cycle types for mosquitoes of the northeastern United States. Journal of Vector Ecology, 29(1), 1–10.

  10. Custer, B., Kamel, H., Kiely, N. E., Murphy, E. L., & Busch, M. P. (2009). Associations between West Nile virus infection and symptoms reported by blood donors identified through nucleic acid test screening. Transfusion, 49(2), 278–288. https://doi.org/10.1111/j.1537-2995.2008.01952.x.

  11. Epp, T. Y., Waldner, C. L., & Berke, O. (2009). Predicting geographical human risk of West Nile virus--Saskatchewan, 2003 and 2007. Canadian Journal of Public Health. Revue Canadienne de Santé Publique, 100(5), 344–348.

  12. Epp, T. Y., Waldner, C., & Berke, O. (2011). Predictive risk mapping of West Nile virus (WNV) infection in Saskatchewan horses. Canadian Journal of Veterinary Research, 75(3), 161–170.

  13. Fauver, J. R., Pecher, L., Schurich, J. A., Bolling, B. G., Calhoon, M., Grubaugh, N. D., et al. (2016). Temporal and spatial variability of entomological risk indices for West Nile virus infection in northern Colorado: 2006-2013. Journal of Medical Entomology, 53(2), 425–434. https://doi.org/10.1093/jme/tjv234.

  14. Howard, J. J., Grayson, M. A., White, D. J., & Oliver, J. (1996). Evidence for multiple foci of eastern equine encephalitis virus (Togaviridae:Alphavirus) in central New York state. Journal of Medical Entomology, 33(3), 421–432.

  15. Johnson, M. G., Adams, J., McDonald-Hamm, C., Wendelboe, A., & Bradley, K. K. (2015). Seasonality and survival associated with three outbreak seasons of West Nile virus disease in Oklahoma--2003, 2007, and 2012. Journal of Medical Virology, 87(10), 1633–1640. https://doi.org/10.1002/jmv.24235.

  16. Kilpatrick, A. M., Kramer, L. D., Campbell, S. R., Alleyne, E. O., Dobson, A. P., & Daszak, P. (2005). West Nile virus risk assessment and the bridge vector paradigm. Emerging Infectious Diseases, 11(3), 425–429. https://doi.org/10.3201/eid1103.040364.

  17. Komar, N. (2003). West Nile virus: epidemiology and ecology in North America. Advances in Virus Research, 61, 185–234.

  18. Kulkarni, M. A., Berrang-Ford, L., Buck, P. A., Drebot, M. A., Lindsay, L. R., & Ogden, N. H. (2015). Major emerging vector-borne zoonotic diseases of public health importance in Canada. Emerging microbes & infections, 4, e33. https://doi.org/10.1038/emi.2015.33.

  19. Kulldorff, M. (1997). A spatial scan statistic. Communications in Statistics-Theory and Methods, 26(6), 1481–1496. https://doi.org/10.1080/03610929708831995.

  20. Ministère de la santé et des services sociaux, Québec (2019). Virus du Nil occidental (VNO) - Tableau des cas humains - Archives 2002 à 2018. http://www.msss.gouv.qc.ca/professionnels/zoonoses/virus-du-nil-occidental-vno/tableau-des-cas-humains-archives/. Accessed July 23 2019.

  21. Monath, T. P. (Ed.). (1988). The arboviruses, epidemiology and ecology. Boca Raton: CRC Press.

  22. Myer, M. H., & Johnston, J. M. (2019). Spatiotemporal Bayesian modeling of West Nile virus: identifying risk of infection in mosquitoes with local-scale predictors. Sci Total Environ, 650(Pt 2), 2818–2829. https://doi.org/10.1016/j.scitotenv.2018.09.397.

  23. National Public Health Institute of Quebec (2013). The risk of West Nile virus in Quebec and interventions prioritized in 2013 [in French]. In INSPQ (Ed.): Canada.

  24. Pan, L., Qin, L., Yang, S. X., & Shuai, J. (2008). A neural network-based method for risk factor analysis of West Nile virus. Risk Analysis, 28(2), 487–496. https://doi.org/10.1111/j.1539-6924.2008.01029.x.

  25. Petersen, L. R., Brault, A. C., & Nasci, R. S. (2013). West Nile virus: review of the literature. Journal of the American Medical Association, 310(3), 308–315. https://doi.org/10.1001/jama.2013.8042.

  26. Rocheleau, J. P., Michel, P., Lindsay, L. R., Drebot, M., Dibernardo, A., Ogden, N. H., et al. (2017a). Characterizing environmental risk factors for West Nile virus in Quebec, Canada, using clinical data in humans and serology in pet dogs. Epidemiology and Infection, 145(13), 2797–2807. https://doi.org/10.1017/S0950268817001625.

  27. Rocheleau, J. P., Michel, P., Lindsay, L. R., Drebot, M., Dibernardo, A., Ogden, N. H., et al. (2017b). Emerging arboviruses in Quebec, Canada: assessing public health risk by serology in humans, horses and pet dogs. Epidemiology and Infection, 145(14), 2940–2948. https://doi.org/10.1017/S0950268817002205.

  28. Talbot, B., Ardis, M., & Kulkarni, M. A. (2019a). Influence of demography, land use, and urban form on West Nile virus risk and human West Nile virus incidence in Ottawa, Canada. Vector Borne and Zoonotic Diseases, 19(7), 533–539. https://doi.org/10.1089/vbz.2018.2366.

  29. Talbot, B., Caron-Levesque, M., Ardis, M., Kryuchkov, R., & Kulkarni, M. A. (2019b). Linking bird and mosquito data to assess spatiotemporal West Nile virus risk in humans. Ecohealth, 16(1), 70–81. https://doi.org/10.1007/s10393-019-01393-8.

  30. Waller, L. A., & Gotway, C. A. (2004). Applied spatial statistics for public health data (Wiley series in probability and statistics). Hoboken, N.J.: John Wiley & Sons.

  31. Wang, J., Ogden, N. H., & Zhu, H. (2011). The impact of weather conditions on Culex pipiens and Culex restuans (Diptera: Culicidae) abundance: a case study in Peel Region. Journal of Medical Entomology, 48(2), 468–475.

  32. Wimberly, M. C., Giacomo, P., Kightlinger, L., & Hildreth, M. B. (2013). Spatio-temporal epidemiology of human West Nile virus disease in South Dakota. International Journal of Environmental Research and Public Health, 10(11), 5584–5602. https://doi.org/10.3390/ijerph10115584.

Download references

Acknowledgements

The authors wish to thank the Directions régionales de la santé publique of Lanaudière, Laurentides, Laval, Montréal and Montérégie for their collaboration in the data collection process, Marie-Josée Archetto for coordinating the data collection, and collaborators from the SIDVS-VNO for their help with the epidemiological database.

Author information

Correspondence to Jean-Philippe Rocheleau.

Ethics declarations

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the Comité d’éthique de la recherche en santé de l’Université de Montréal (protocol 14-135-CERES-D) and with the 1964 Helsinki declaration and its later amendments.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rocheleau, J., Kotchi, S. & Arsenault, J. Can local risk of West Nile virus infection be predicted from previous cases? A descriptive study in Quebec, 2011–2016. Can J Public Health (2020). https://doi.org/10.17269/s41997-019-00279-0

Download citation

Keywords

  • West Nile virus
  • Risk distribution
  • Human
  • Spatiotemporal
  • Public health

Mots-clés

  • Virus du Nil occidental
  • Distribution du risque
  • Humain
  • Spatiotemporel
  • Santé publique