Canadian Journal of Public Health

, Volume 109, Issue 5–6, pp 671–683 | Cite as

Socio-economic inequalities in blood mercury (Hg) and serum polychlorinated biphenyl (PCB) concentrations among pregnant Inuit women from Nunavik, Canada

  • Thérèse Yéro AdamouEmail author
  • Mylène Riva
  • Gina Muckle
  • Elhadji Anassour Laouan-Sidi
  • Pierre Ayotte
Quantitative Research



We examined the relationships between socio-economic characteristics and mercury (Hg) and polychlorinated biphenyl (PCB) concentrations among pregnant Inuit women from Nunavik.


We used biomonitoring data from 208 pregnant Inuit women recruited in the 14 villages of Nunavik between September 2011 and December 2013. Blood samples were collected to monitor levels of blood Hg and serum congener PCB-153 (surrogate of total PCB concentration). Ratio of omega 3/omega 6 polyunsaturated fatty acids, a validated biomarker of marine country food consumption, was also measured in red blood cell membranes to determine maternal dietary profile. Data on socio-economic characteristics (income and education), health-related lifestyles, and reproductive history were collected through questionnaires. Association between socio-economic characteristics and contaminant concentrations was assessed using linear regressions.


We observed a significant inverse relationship between education and Hg levels. Lower concentrations of Hg were observed among women who had completed high school compared to women who had not completed high school. However, no association was observed between level of education and concentration of PCBs.


Socio-economic disparities in maternal exposure to Hg exist in Nunavik. Further research is needed to determine whether environmental health inequalities also exist in other subgroups of the Nunavik population and in other Indigenous communities in Canada.


Socio-economic characteristics Environmental exposure Pollutants Inuit Pregnant women Mercury Polychlorinated biphenyls 



Nous avons examiné les associations entre les caractéristiques socioéconomiques et les concentrations en mercure (Hg) et biphényles polychlorés (BPCs) chez les femmes enceintes Inuit du Nunavik.


Un total de 208 femmes enceintes Inuites ont été recrutées entre septembre 2011 et décembre 2013 dans les 14 villages du Nunavik. Des échantillons de sang ont été prélevés pour mesurer la concentration sanguine en Hg et la concentration sérique en congénère BPC-153 (marqueur de la concentration totale en BPCs) des participantes. Le ratio des acides gras polyinsaturés oméga 3/oméga 6, un biomarqueur valide de la consommation d’aliments marins, a également été mesuré dans les membranes des globules rouges pour déterminer le profil alimentaire des participantes. Des informations sur les caractéristiques socioéconomiques (revenu et éducation), les habitudes de vie et l’historique de reproduction des participantes ont aussi été recueillies par le biais de questionnaires. Les associations entre les caractéristiques socioéconomiques et les concentrations en contaminants ont été examinées à l’aide de régressions linéaires.


Une relation inverse et statistiquement significative entre le niveau d’éducation et la concentration en Hg a été observée. Les femmes qui avaient complété leurs études secondaires présentaient une concentration sanguine en Hg plus faible que celles qui n’avaient pas complété leurs études secondaires. En revanche, aucune association n’a été observée entre le niveau d’éducation et la concentration en BPCs.


Des disparités socioéconomiques dans l’exposition maternelle au Hg existent au Nunavik. Des recherches supplémentaires sont nécessaires pour déterminer si des inégalités en matière de santé environnementale existent également dans d’autres sous-groupes de la population du Nunavik et dans d’autres communautés autochtones du Canada.


Caractéristiques socio-économiques Exposition environnementale Polluants Inuit Femmes enceintes Mercure Biphényles polychlorés 



The authors are grateful to the Nunavimmiut population and to all pregnant women who participated in biomonitoring studies conducted in Nunavik. We dedicate this article to the memory of Éric Dewailly.


This work was supported by the Northern Contaminant Program, Indian and Northern Affairs Canada (Grant 2011–2013). Thérèse Yéro Adamou also received doctoral grants from the Fondation du CHU de Québec (Grant 2015–2016), the Chaire de recherche nordique en sciences sociales of Laval University (Grant 2015–2016), and the Strategic Training Program in Global Health Research, a partnership of the Canadian Institutes of Health Research and the Québec Population Health Research Network (Grant 2014–2015).

Compliance with ethical standards

The 2011–2013 biomonitoring protocol was approved by the research ethics committee from Centre Hospitalier Universitaire de Québec Research Centre and the Nunavik Nutrition and Health Committee (NNHC). The proposal to conduct the current study and the final manuscript were also reviewed and approved by the NNHC.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

41997_2018_77_MOESM1_ESM.docx (37 kb)
ESM 1 (DOCX 36 kb)


  1. Amin-Zaki, L., Elhassani, S., Majeed, M. A., Clarkson, T. W., Doherty, R. A., & Greenwood, M. (1974). Intra-uterine methylmercury poisoning in Iraq. Pediatrics, 54(5), 587–595.PubMedGoogle Scholar
  2. Arbuckle, T. E., Liang, C. L., Morisset, A.-S., Fisher, M., Weiler, H., Cirtiu, C. M., et al. (2016). Maternal and fetal exposure to cadmium, lead, manganese and mercury: the MIREC study. Chemosphere, 163, 270–282.PubMedCrossRefGoogle Scholar
  3. Azandjeme, C. S., Delisle, H., Fayomi, B., Ayotte, P., Djrolo, F., Houinato, D., et al. (2014). High serum organochlorine pesticide concentrations in diabetics of a cotton producing area of the Benin Republic (West Africa). Environment International, 69, 1–8.PubMedCrossRefGoogle Scholar
  4. Belova, A., Greco, S. L., Riederer, A. M., Olsho, L. E., & Corrales, M. A. (2013). A method to screen U.S. environmental biomonitoring data for race/ethnicity and income-related disparity. Environmental Health, 12(1), 114.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Blanchet C, Rochette L. (2008). Nutrition and food consumption among Inuit of Nunavik. Nunavik Inuit Health Survey 2004 Qanuippitaa? How are we? Quebec, QC: Institut National de Santé Publique du Québec (INSPQ) & Nunavik Regional Board of Health and Social Services (NRBHSS). p. 54–5.Google Scholar
  6. Bonefeld-Jorgensen, E. C. (2010). Biomonitoring in Greenland: human biomarkers of exposure and effects—a short review. Rural Remote Health, 10(2), 1362.PubMedGoogle Scholar
  7. Borrell, L. N., Factor-Litvak, P., Wolff, M. S., Susser, E., & Matte, T. D. (2004). Effect of socioeconomic status on exposures to polychlorinated biphenyls (PCBs) and dichlorodiphenyldichloroethylene (DDE) among pregnant African-American women. Archives of Environmental Health, 59(5), 250–255.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Boucher, O., Muckle, G., Jacobson, J. L., Carter, R. C., Kaplan-Estrin, M., Ayotte, P., et al. (2014). Domain-specific effects of prenatal exposure to PCBs, mercury, and lead on infant cognition: results from the environmental contaminants and Child Development Study in Nunavik. Environmental Health Perspectives, 122(3), 310–316.PubMedPubMedCentralGoogle Scholar
  9. Bougie E, Kelly-Scott K, Arriagada P. (2013). The education and employment experiences of First Nations people living off reserve, Inuit, and Métis: Selected findings from the 2012 Aboriginal Peoples Survey: Statistics Canada, Social and Aboriginal Statistics Division, OttawaGoogle Scholar
  10. Braune, B., Chételat, J., Amyot, M., Brown, T., Clayden, M., Evans, M., et al. (2015). Mercury in the marine environment of the Canadian Arctic: Review of recent findings. Science of the Total Environment, 509, 67–90.PubMedCrossRefGoogle Scholar
  11. Brulle, R. J., & Pellow, D. N. (2006). Environmental justice: human health and environmental inequalities. Annual Review of Public Health, 27, 103–124.PubMedCrossRefGoogle Scholar
  12. Charlebois, C. T. (1978). High mercury levels in Indians and Inuits (Eskimos) in Canada. Ambio, 7(5–6), 204–210.Google Scholar
  13. Curren, M. S., Davis, K., Liang, C. L., Adlard, B., Foster, W. G., Donaldson, S. G., et al. (2014). Comparing plasma concentrations of persistent organic pollutants and metals in primiparous women from northern and southern Canada. Science of the Total Environment, 480, 306–318.CrossRefGoogle Scholar
  14. Dallaire, F., Dewailly, E., Muckle, G., & Ayotte, P. (2003). Time trends of persistent organic pollutants and heavy metals in umbilical cord blood of Inuit infants born in Nunavik (Quebec, Canada) between 1994 and 2001. Environmental Health Perspectives, 111(13), 1660–1664.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Deutch, B., Pedersen, H. S., & Hansen, J. C. (2004). Dietary composition in Greenland 2000, plasma fatty acids and persistent organic pollutants. Science of the Total Environment, 331(1–3), 177–188.PubMedCrossRefGoogle Scholar
  16. Dewailly, E., Nantel, A., Weber, J. P., & Meyer, F. (1989). High levels of PCBs in breast milk of Inuit women from arctic Quebec. Bulletin of Environmental Contamination and Toxicology, 43(5), 641–646.PubMedCrossRefGoogle Scholar
  17. Dewailly, E., Ayotte, P., Bruneau, S., Laliberté, C., Muir, D. C., & Norstrom, R. J. (1993). Inuit exposure to organochlorines through the aquatic food chain in Arctic Quebec. Environmental Health Perspectives, 101(7), 618–620.PubMedPubMedCentralGoogle Scholar
  18. Dewailly, E., Ayotte, P., Bruneau, S., Lebel, G., Levallois, P., & Weber, J. P. (2001). Exposure of the Inuit population of Nunavik (Arctic Quebec) to lead and mercury. Archives of Environmental Health, 56(4), 350–357.PubMedCrossRefGoogle Scholar
  19. Dewailly,E., Déry, S., Ayotte, P., Muckle, G., & Dallaire, R. (2012) Monitoring spatial and temporal trends of environmental pollutants in maternal blood in Nunavik (year 1), in Synopsis of research conducted under the 2011-2012 Northern Contaminants Program, Aboriginal Affairs and Northern Development Canada, Editor. Gatineau (QC).Google Scholar
  20. Donaldson, S., Van Oostdam, J., Tikhonov, C., Feeley, M., Armstrong, B., Ayotte, P., et al. (2010). Environmental contaminants and human health in the Canadian Arctic. Science of the Total Environment, 408(22), 5165–5234.PubMedCrossRefGoogle Scholar
  21. Doocy, S., & Burnham, G. (2006). Assessment of socio-economic status in the context of food insecurity: Implications for field research. World Health & Population, 8(3), 32–42.CrossRefGoogle Scholar
  22. Durnford, D., Dastoor, A., Figueras-Nieto, D., & Ryjkov, A. (2010). Long range transport of mercury to the Arctic and across Canada. Atmospheric Chemistry and Physics., 10(13), 6063–6086.CrossRefGoogle Scholar
  23. Ethier, A. A., Muckle, G., Bastien, C., Dewailly, E., Ayotte, P., Arfken, C., et al. (2012). Effects of environmental contaminant exposure on visual brain development: a prospective electrophysiological study in school-aged children. Neurotoxicology, 33(5), 1075–1085.PubMedCrossRefGoogle Scholar
  24. Fisher, M., Arbuckle, T. E., Liang, C. L., LeBlanc, A., Gaudreau, E., Foster, W. G., et al. (2016). Concentrations of persistent organic pollutants in maternal and cord blood from the maternal-infant research on environmental chemicals (MIREC) cohort study. Environmental Health, 15(1), 59.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Fontaine, J., Dewailly, E., Benedetti, J. L., Pereg, D., Ayotte, P., & Déry, S. (2008). Re-evaluation of blood mercury, lead and cadmium concentrations in the Inuit population of Nunavik (Québec): a cross-sectional study. Environmental Health, 7(25), 1–13.Google Scholar
  26. Galloway, T., Johnson-Down, L., & Egeland, G. M. (2015). Socioeconomic and cultural correlates of diet quality in the Canadian Arctic: results from the 2007–2008 Inuit Health Survey. Canadian Journal of Dietetic Practice and Research, 76(3), 117–125.PubMedCrossRefGoogle Scholar
  27. Gasull, M., Pumarega, J., Rovira, G., Lopez, T., Alguacil, J., & Porta, M. (2013). Relative effects of educational level and occupational social class on body concentrations of persistent organic pollutants in a representative sample of the general population of Catalonia, Spain. Environment International, 60, 190–201.PubMedCrossRefGoogle Scholar
  28. Glynn, A., Aune, M., Darnerud, P. O., Cnattingius, S., Bjerselius, R., Becker, W., et al. (2007). Determinants of serum concentrations of organochlorine compounds in Swedish pregnant women: a cross-sectional study. Environmental Health, 6(2), 1–14.Google Scholar
  29. Golding, J., Steer, C. D., Hibbeln, J. R., Emmett, P. M., Lowery, T., & Jones, R. (2013). Dietary predictors of maternal prenatal blood mercury levels in the ALSPAC birth cohort study. Environmental Health Perspectives, 121(10), 1214–1218.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Government of Canada (2016a). Human health: monitoring of environmental pollutants in maternal blood in Nunavik: time trend assessment and evaluation of the Arctic Char Program. Available at: Accessed 04 May 2018.
  31. Government of Canada (2016b). Communications, capacity and outreach. Available at: Accessed 10 Jan 2017.
  32. Grandjean, P., & Landrigan, P. J. (2006). Developmental neurotoxicity of industrial chemicals. Lancet, 368(9553), 2167–2178.PubMedCrossRefGoogle Scholar
  33. Guliani, H., Sepehri, A., & Serieux, J. (2014). Determinants of prenatal care use: evidence from 32 low-income countries across Asia, sub-Saharan Africa and Latin America. Health Policy and Planning, 29(5), 589–602.PubMedCrossRefGoogle Scholar
  34. Harada, M. (1978). Congenital Minamata disease: intrauterine methylmercury poisoning. Teratology, 18(2), 285–288.PubMedCrossRefGoogle Scholar
  35. Hopping, B. N., Erber, E., Mead, E., Sheehy, T., Roache, C., & Sharma, S. (2010). Socioeconomic indicators and frequency of traditional food, junk food, and fruit and vegetable consumption amongst Inuit adults in the Canadian Arctic. J Hum Nutr Diet, 23(suppl 1), 51–58.PubMedCrossRefGoogle Scholar
  36. Howe, L. D., Galobardes, B., Matijasevich, A., Gordon, D., Johnston, D., Onwujekwe, O., et al. (2012). Measuring socio-economic position for epidemiological studies in low- and middle-income countries: a methods of measurement in epidemiology paper. International Journal of Epidemiology, 41(3), 871–886.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Huet, C., Rosol, R., & Egeland, G. M. (2012). The prevalence of food insecurity is high and the diet quality poor in Inuit communities. The Journal of Nutrition, 142(3), 541–547.PubMedCrossRefGoogle Scholar
  38. Ibarluzea, J., Alvarez-Pedrerol, M., Guxens, M., Marina, L. S., Basterrechea, M., Lertxundi, A., et al. (2011). Sociodemographic, reproductive and dietary predictors of organochlorine compounds levels in pregnant women in Spain. Chemosphere, 82(1), 114–120.PubMedCrossRefGoogle Scholar
  39. Institut de la Statistique du Québec (2017a). Direction des statistiques sociodemographiques, Statistics Canada. Population by age group, both sexes, RCMs of the Nord-du-Québec region, 2001, 2006 and 2010–2016. Available at: (Accessed July 24, 2017).
  40. Institut de la Statistique du Québec (2017b). Births, deaths, natural increase, and mariages in RCMs, Québec, 2002–2016. Available at: (Accessed july 24, 2017).
  41. Jacobson, J. L., Muckle, G., Ayotte, P., Dewailly, E., & Jacobson, S. W. (2015). Relation of prenatal methylmercury exposure from environmental sources to childhood IQ. Environmental Health Perspectives, 100(8), 827–833.Google Scholar
  42. Jurewicz, J., Polanska, K., & Hanke, W. (2013). Chemical exposure early in life and the neurodevelopment of children—an overview of current epidemiological evidence. Annals of Agricultural and Environmental Medicine, 20(3), 465–486.PubMedGoogle Scholar
  43. Kuhnlein, H., Receveur, O., Muir, D., Chan, H., & Soueida, R. (1995). Arctic indigenous women consume greater than acceptable levels of organochlorines. The Journal of Nutrition, 125(10), 2501–2510.PubMedGoogle Scholar
  44. Lai, T. J., Guo, Y., Guo, N. W., & Hsu, C. C. (2001). Effect of prenatal exposure to polychlorinated biphenyls on cognitive development in children: a longitudinal study in Taiwan. The British Journal of Psychiatry, 178(40), s49–s52.CrossRefGoogle Scholar
  45. Legrand, M., Feeley, M., Tikhonov, C., Schoen, D., & Li-Muller, A. (2010). Methylmercury blood guidance values for Canada. Canadian Journal of Public Health, 101(1), 28–31.PubMedGoogle Scholar
  46. Lemire, M., Kwan, M., Laouan-Sidi, A. E., Muckle, G., Pirkle, C., Ayotte, P., et al. (2015). Local country food sources of methylmercury, selenium and omega-3 fatty acids in Nunavik, Northern Quebec. Science of the Total Environment, 509–510, 248–259.PubMedCrossRefGoogle Scholar
  47. Llop, S., Ballester, F., Vizcaino, E., Murcia, M., Lopez-Espinosa, M. J., Rebagliato, M., et al. (2010). Concentrations and determinants of organochlorine levels among pregnant women in Eastern Spain. Science of the Total Environment, 408(23), 5758–5767.PubMedCrossRefGoogle Scholar
  48. Lorenc, T., & Oliver, K. (2014). Adverse effects of public health interventions: a conceptual framework. Journal of Epidemiology and Community Health, 68(3), 288–290.PubMedCrossRefGoogle Scholar
  49. Mahaffey, K. R., Clickner, R. P., & Jeffries, R. A. (2009). Adult women’s blood mercury concentrations vary regionally in the United States: association with patterns of fish consumption (NHANES 1999-2004). Environmental Health Perspectives, 117(1), 47–53.PubMedCrossRefGoogle Scholar
  50. Makivik Corporation (2017). Nunavik map.Google Scholar
  51. Miranda, M. L., Edwards, S., & Maxson, P. J. (2011). Mercury levels in an urban pregnant population in Durham County, North Carolina. International Journal of Environmental Research and Public Health, 8(3), 698–712.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Morrissette, J., Takser, L., St-Amour, G., Smargiassi, A., Lafond, J., & Mergler, D. (2004). Temporal variation of blood and hair mercury levels in pregnancy in relation to fish consumption history in a population living along the St. Lawrence River. Environmental Research, 95(3), 363–374.PubMedCrossRefGoogle Scholar
  53. Muckle, G., Ayotte, P., Dewailly, E., Jacobson, S. W., & Jacobson, J. L. (2001a). Prenatal exposure of the northern Québec Inuit infants to environmental contaminants. Environmental Health Perspectives, 109(12), 1291–1299.PubMedPubMedCentralGoogle Scholar
  54. Muckle, G., Ayotte, P., Dewailly, E., Jacobson, S. W., & Jacobson, J. L. (2001b). Determinants of polychlorinated biphenyls and methylmercury exposure in Inuit women of childbearing age. Environmental Health Perspectives, 109(9), 957–963.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Munroe, E., Borden, L., Murray Orr, A., Toney, D., & Meader, J. (2013). Decolonizing aboriginal education in the 21st century. McGill Journal of Education, 48(2), 317–337.CrossRefGoogle Scholar
  56. National Research Council Committee on the Toxicological Effects of Methylmercury. (2000). Toxicological effects of methylmercury. Washington, DC: The National Academies Press (US) 368 p.Google Scholar
  57. Nunavik Regional Board of Health and Social Services (2011). Institut National de Santé Publique du Québec. Health profile of Nunavik: demographic and socioeconomic conditions.Google Scholar
  58. Nunavik Regional Board of Health and Social Services (2015). Public Health. Available at: Nutrition and Health Committee (NNHC) (Accessed November 08, 2017).
  59. Nunavik Regional Board of Health and Social Services (NRBHSS) (2011). Results from the Nunavik Child Development Study (NCDS): public health implications. Kuujjuaq: Nunavik Regional Board of Health and Social Services.Google Scholar
  60. Nunavik Regional Board of Health and Social Services and Nunavik Nutrition and Health Committee (2003). Press release [press release]. Kuujjuaq: Nunavik Regional Board of Health and Social Services.Google Scholar
  61. Pauktuutit Inuit Women of Canada (2018). Education. Available at: Accessed 25 Mar 2018.
  62. Pirkle, C. M., Muckle, G., & Lemire, M. (2016). Managing mercury exposure in northern Canadian communities. Canadian Medical Association Journal, 188(14), 1015–1023.PubMedCrossRefGoogle Scholar
  63. Proust, F., Lucas, M., & Dewailly, E. (2014). Fatty acid profiles among the Inuit of Nunavik: current status and temporal change. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 90(5), 159–167.PubMedCrossRefGoogle Scholar
  64. Rigét, F., Bignert, A., Braune, B., Stow, J., & Wilson, S. (2010). Temporal trends of legacy POPs in Arctic biota, an update. Science of the Total Environment, 408(15), 2874–2884.PubMedCrossRefGoogle Scholar
  65. Ritter, R., Scheringer, M., MacLeod, M., Moeckel, C., Jones, K. C., & Hungerbuhler, K. (2011). Intrinsic human elimination half-lives of polychlorinated biphenyls derived from the temporal evolution of cross-sectional biomonitoring data from the United Kingdom. Environmental Health Perspectives, 119(2), 225–231.PubMedCrossRefGoogle Scholar
  66. Rochette L, Blanchet C. (2007). Methodological report. Nunavik Inuit Health Survey 2004, Qanuippitaa? How are we. Institut national de santé publique du Québec (INSPQ) & Nunavik Regional Board of Health and Social Services (NRBHSS), Québec.Google Scholar
  67. Sanders, A. P., Flood, K., Chiang, S., Herring, A. H., Wolf, L., & Fry, R. C. (2012). Towards prenatal biomonitoring in North Carolina: assessing arsenic, cadmium, mercury, and lead levels in pregnant women. PLoS One, 7(3), e31354.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Sarcinelli, P. N., Pereira, A. C., Mesquita, S. A., Oliveira-Silva, J. J., Meyer, A., Menezes, M. A., et al. (2003). Dietary and reproductive determinants of plasma organochlorine levels in pregnant women in Rio de Janeiro. Environmental Research, 91(3), 143–150.PubMedCrossRefGoogle Scholar
  69. Shepherd, C. C., Li, J., & Zubrick, S. R. (2012). Social gradients in the health of Indigenous Australians. American Journal of Public Health, 102(1), 107–117.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Sørensen, K., Van den Broucke, S., Fullam, J., Doyle, G., Pelikan, J., Slonska, Z., et al. (2012). Health literacy and public health: a systematic review and integration of definitions and models. BMC Public Health, 12(1), 1–13.CrossRefGoogle Scholar
  71. Taylor, C. M., Golding, J., Hibbeln, J., & Emond, A. M. (2013). Environmental factors predicting blood lead levels in pregnant women in the UK: the ALSPAC study. PLoS One, 8(9), 72371.CrossRefGoogle Scholar
  72. Tenenbaum, D. J. (1998). Northern overexposure. Environmental Health Perspectives, 106(2), A64–AA9.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Tyrrell, J., Melzer, D., Henley, W., Galloway, T. S., & Osborne, N. J. (2013). Associations between socioeconomic status and environmental toxicant concentrations in adults in the USA: NHANES 2001–2010. Environment International, 59, 328–335.PubMedCrossRefGoogle Scholar
  74. Van Oostdam, J., Donaldson, S., Feeley, M., Arnold, D., Ayotte, P., Bondy, G., et al. (2005). Human health implications of environmental contaminants in Arctic Canada: a review. Science of the Total Environment, 351-352, 165–246.PubMedCrossRefGoogle Scholar
  75. Viswanath, K., & Ackerson, L. K. (2011). Race, ethnicity, language, social class, and health communication inequalities: a nationally-representative cross-sectional study. PLoS One, 6(1), e14550.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Vrijheid, M., Martinez, D., Aguilera, I., Ballester, F., Basterrechea, M., Esplugues, A., et al. (2012). Socioeconomic status and exposure to multiple environmental pollutants during pregnancy: evidence for environmental inequity? Journal of Epidemiology and Community Health, 66(2), 106–113.PubMedCrossRefGoogle Scholar
  77. Wang, R. Y., Jain, R. B., Wolkin, A. F., Rubin, C. H., & Needham, L. L. (2009). Serum concentrations of selected persistent organic pollutants in a sample of pregnant females and changes in their concentrations during gestation. Environmental Health Perspectives, 117(8), 1244–1249.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Wolff, M. S., Deych, E., Ojo, F., & Berkowitz, G. S. (2005). Predictors of organochlorines in New York City pregnant women, 1998–2001. Environmental Research, 97(2), 170–177.PubMedCrossRefGoogle Scholar
  79. World Health Organization (WHO) (2017). Ten chemicals of majors public health concern. International Program on Chemical Safety. Available at: (Accessed January 6, 2017).

Copyright information

© The Canadian Public Health Association 2018

Authors and Affiliations

  • Thérèse Yéro Adamou
    • 1
    • 2
    Email author
  • Mylène Riva
    • 3
    • 4
  • Gina Muckle
    • 1
    • 5
  • Elhadji Anassour Laouan-Sidi
    • 1
  • Pierre Ayotte
    • 1
    • 6
  1. 1.Population Health and Practice-changing Research GroupCHU de Québec Research CentreQuébecCanada
  2. 2.Faculty of NursingUniversité LavalQuébecCanada
  3. 3.Department of GeographyMcGill UniversityMontrealCanada
  4. 4.Institute for Health and Social PolicyMcGill UniversityMontréalCanada
  5. 5.School of PsychologyUniversité LavalQuébecCanada
  6. 6.Institut National de Santé Publique du QuébecQuébecCanada

Personalised recommendations