Skip to main content
Log in

Lifetime excess cancer risk due to carcinogens in food and beverages: Urban versus rural differences in Canada

  • Quantitative Research
  • Published:
Canadian Journal of Public Health Aims and scope Submit manuscript

Abstract

OBJECTIVES: To explore differences in urban versus rural lifetime excess risk of cancer from five specific contaminants found in food and beverages.

METHODS: Probable contaminant intake is estimated using Monte Carlo simulations of contaminant concentrations in combination with dietary patterns. Contaminant concentrations for arsenic, benzene, lead, polychlorinated biphenyls (PCBs) and tetrachloroethylene (PERC) were derived from government dietary studies. The dietary patterns of 34 944 Canadians from 10 provinces were available from Health Canada’s Canadian Community Health Survey, Cycle 2.2, Nutrition (2004). Associated lifetime excess cancer risk (LECR) was subsequently calculated from the results of the simulations.

RESULTS: In the calculation of LECR from food and beverages for the five selected substances, two (lead and PERC) were shown to have excess risk below 10 per million; whereas for the remaining three (arsenic, benzene and PCBs), it was shown that at least 50% of the population were above 10 per million excess cancers. Arsenic residues, ingested via rice and rice cereal, registered the greatest disparity between urban and rural intake, with LECR per million levels well above 1000 per million at the upper bound. The majority of PCBs ingestion comes from meat, with values slightly higher for urban populations and LECR per million estimates between 50 and 400. Drinking water is the primary contributor of benzene intake in both urban and rural populations, with LECR per million estimates of 35 extra cancers in the top 1% of sampled population.

CONCLUSION: Overall, there are few disparities between urban and rural lifetime excess cancer risk from contaminants found in food and beverages. Estimates could be improved with more complete Canadian dietary intake and concentration data in support of detailed exposure assessments in estimating LECR.

Résumé

OBJECTIFS: Explorer les écarts dans le risque excédentaire à vie de cancer en zone urbaine et en zone rurale associé à cinq contaminants précis trouvés dans les aliments et les boissons.

MÉTHODE: Nous avons estimé l’absorption probable des contaminants à l’aide de simulations de Monte-Carlo portant sur les concentrations de contaminants combinées aux habitudes alimentaires. Les concentrations d’arsenic, de benzène, de plomb, de biphényles polychlorés (BPC) et de tétrachloréthylène (PERC) ont été dérivées d’études gouvernementales d’exposition par voie alimentaire. Les habitudes alimentaires de 34 944 Canadiens dans 10 provinces provenaient du cycle 2.2, Nutrition, de l’Enquête sur la santé dans les collectivités canadiennes de Santé Canada (2004). À partir des résultats des simulations, nous avons calculé le risque excédentaire à vie de cancer (REAVC) associé.

RÉSULTATS: Lorsque nous avons calculé le REAVC associé aux aliments et aux boissons pour les cinq substances choisies, nous avons obtenu un risque excédentaire inférieur à 10 par million pour deux substances (le plomb et le PERC); pour les trois autres substances (l’arsenic, le benzène et les BPC), au moins 50 % de la population était au-dessus du seuil de 10 cancers excédentaires par million. Les résidus d’arsenic, ingérés dans le riz et les céréales de riz, ont présenté la plus grande disparité entre les niveaux d’absorption en zone urbaine et rurale, avec un REAVC par million très au-dessus de 1 000 par million à la limite supérieure. La majorité des BPC ingérés le sont dans la viande, avec des valeurs légèrement supérieures dans les populations urbaines et un REAVC qui se situerait entre 50 et 400 par million. L’eau potable est la principale source d’absorption du benzène, tant dans les populations urbaines que rurales, avec un REAVC par million estimé à 35 cancers excédentaires dans le centile supérieur de la population échantillonnée.

CONCLUSION: Dans l’ensemble, il y a peu de disparités entre les zones urbaines et rurales pour ce qui est du risque excédentaire à vie de cancer associé aux contaminants trouvés dans les aliments et les boissons. Les estimations du REAVC pourraient être améliorées si l’on disposait de données plus complètes sur les apports alimentaires et les concentrations au Canada pour appuyer les évaluations approfondies de l’exposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Morton LW, Bitto EA, Oakland MJ, Sand M. Accessing food resources: Rural and urban patterns of giving and getting food. Agric Human Values 2008; 25(1):107–19. doi: 10.1007/s10460-007-9095-8.

    Article  Google Scholar 

  2. Dean WR, Sharkey JR. Rural and urban differences in the associations between characteristics of the community food environment and fruit and vegetable intake. JNutrEducBehav 2011;43(6):426–33. PMID: 21616721. doi: 10.1016/j.jneb.2010.07.001.

    Google Scholar 

  3. Ostry A, Morrision K. A method for estimating the extent of regional food self-sufficiency and dietary ill health in the province of British Columbia, Canada. Sustain 2013;5(11):4949–60. doi: 10.3390/su5114949.

    Article  Google Scholar 

  4. Jackson J, Doescher M, Jerant AF, Hart L. A national study of obesity prevalence and trends by type of rural county. J Rural Health 2005;21:140–48. PMID: 15859051. doi: 10.1111/j.1748-0361.2005.tb00074.x.

    Article  Google Scholar 

  5. Hill JL, You W, Zoellner JM. Disparities in obesity among rural and urban residents in a health disparate region. BMC Public Health 2014;14(1):1051. PMID: 25297840. doi: 10.1186/1471-2458-14-1051.

    Google Scholar 

  6. Monroe AC, Ricketts TC, Savitz LA. Cancer in rural versus urban populations: A review. J Rural Health 1992;8(3):212–20. PMID: 10121550. doi: 10.1111/j.1748-0361.1992.tb00354.x.

    Article  CAS  Google Scholar 

  7. Pampalon R, Martinez J, Hamel D. Does living in rural areas make a difference for health in Québec? Health Place 2006;12(4):421–35. PMID: 15955720. doi: 10.1016/j.healthplace.2005.04.002.

    Article  Google Scholar 

  8. Sharp L, Donnelly D, Hegarty A, Carsin AE, Deady S, McCluskey N, et al. Risk of several cancers is higher in urban areas after adjusting for socioeconomic status. Results from a two-country population-based study of 18 common cancers. J Urban Health 2014;91(3):510–25. PMID: 24474611. doi: 10.1007/s11524-013-9846-3.

    Article  Google Scholar 

  9. IARC. Agents Classified by the IARC Monographs, Volumes 1-114, 2015.

    Google Scholar 

  10. Health Canada. A Handbook for Exposure Calculations. Ottawa, ON: Health Canada, 1995.

    Google Scholar 

  11. Health Canada. Federal Contaminated Site Risk Assessment in Canada, Part II: Health Canada Toxicological Reference Values and Chemical-Specific Factors. Ottawa, ON: Health Canada, 2010.

    Google Scholar 

  12. CA-OEHHA. Hot Spots Unit Risk and Cancer Potency Values. Sacramento, CA: California Environmental Protection Agency, 2011. Available at: https://oehha.ca.gov/ (Accessed September 8, 2016).

    Google Scholar 

  13. US EPA. Integrated Risk Information System: CPFs. Washington, DC: US Environmental Protection Agency, 2015. Available at: https://www.epa.gov/iris (Accessed September 8, 2016).

    Google Scholar 

  14. Tao SS, Bolger PM. Dietary arsenic intakes in the United States: FDA Total Diet Study, September 1991–December 1996. Food Addit Contam 1999;16:465–72. doi: 10.1080/026520399283759.

    Article  CAS  Google Scholar 

  15. Health Canada. Canadian Community Health Survey, Cycle 2.2, Nutrition (2004): A Guide to Accessing and Interpreting the Data. Ottawa, ON: Health Canada, 2004. Available at: http://www.hc-sc.gc.ca/fn-an/surveill/nutrition/commun/cchs_guide_escc-eng.php (Accessed September 8, 2016).

    Google Scholar 

  16. Health Canada. Canadian Community Health Survey, Cycle 2.2, Nutrition (2004): Income-Related Household Food Security in Canada. Ottawa, ON: Health Canada, 2007. H164-42/2007E-PDF.

    Google Scholar 

  17. Canadian Council on Social Development. A Demographic Profile of Canada. Kanata, ON: CCSD, 2004; 1–12.

    Google Scholar 

  18. Canadian Food Inspection Agency. National Chemical Residue Monitoring Program 2012–2013Report. Ottawa, ON: CFIA, 2014. Available at: http://www.inspection.gc.ca/food/chemical-residues-microbiology/chemical-residues/ncrmp-report/eng/1415838181260/1415838265896 (Accessed September 8, 2016).

    Google Scholar 

  19. US FDA. US Food and Drug Administration - Total Diet Study Market Baskets 1991–1993 through 2003–2004. College Park, MD: USFDA, 2006.

    Google Scholar 

  20. US FDA. Total Diet Study. Elements Results Summary Statistics. Market Baskets 2006 through 2011. 2014. Available at: http://www.fda.gov/downloads/Food/FoodScienceResearch/TotalDietStudy/UCM184301.pdf (Accessed September 8, 2016).

    Google Scholar 

  21. Cheasley R. Geographic Exposure and Risk Assessment for Food Contaminants in Canada. 2016. Available at: http://www.hdl.handle.net/1828/7396 (Accessed September 8, 2016).

    Google Scholar 

  22. Statistics Canada. Nutrition - General Health (Including Vitamin & Mineral Supplements) & 24-Hour Dietary Recall Components User Guide. Ottawa, ON: Statistics Canada, 2008. Available at: http://www.www23.statcan.gc.ca/imdb-bmdi/pub/document/5049_D24_T9_V1-eng.pdf (Accessed September 8, 2016).

    Google Scholar 

  23. Jara EA, Winter CK. Dietary exposure to total and inorganic arsenic in the United States, 2006–2008. Int J Food Contam 2014;1(1):3. doi: 10.1186/s40550-014-0003-x.

    Article  Google Scholar 

  24. Lynch HN, Greenberg GI, Pollock MC, Lewis AS. A comprehensive evaluation of inorganic arsenic in food and considerations for dietary intake analyses. Sci Total Environ 2014;496:299–313. PMID: 25089691. doi: 10.1016/j.scitotenv.2014.07.032.

    Article  CAS  Google Scholar 

  25. CAREX Canada. Surveillance of Environmental and Occupational Exposures for Cancer Prevention. 2016. Available at: http://www.carexcanada.ca/en/.

    Google Scholar 

  26. Munoz O, Bastias JM, Araya M, Morales A, Orellana C, Rebolledo R, et al. Estimation of the dietary intake of cadmium, lead, mercury, and arsenic by the population of Santiago (Chile) using a Total Diet Study. Food Chem Toxicol 2005;43(11):1647–55. PMID: 15975702. doi: 10.1016/j.fct.2005.05.006.

    Article  CAS  Google Scholar 

  27. Xue J, Zartarian V, Wang SW, Liu SV, Georgopoulos P. Probabilistic modeling of dietary arsenic exposure and dose and evaluation with 2003–2004 NHANES data. Environ Health Perspect 2010;118(3):345–50. PMID: 20194069. doi: 10. 1289/ehp.0901205.

    Article  CAS  Google Scholar 

  28. Health Canada. Guidelines for CanadianDrinking Water Quality: Guideline Technical Document - Benzene. 2009. Available at: https://www.canada.ca/en/health-canada/services/publications/healthy-living/guidelines-canadian-drinking-water-quality-guideline-technical-document-benzene.html (Accessed September 8, 2016).

    Google Scholar 

  29. Vinci R, Jacxsens L, Van Loco J, Matsiko E, Lachat C, de Schaetzen T, et al. Assessment of human exposure to benzene through foods from the Belgian market. Chemosphere 2012;88(8):1001–7. PMID: 22483726. doi: 10.1016/j.chemosphere.2012.03.044.

    Article  Google Scholar 

  30. Turconi G, Minoia C, Ronchi A, Roggi C. Dietary exposure estimates of twenty-one trace elements from a Total Diet Study carried out in Pavia, Northern Italy. Br J Nutr 2009;101(8):1200–8. PMID: 19007448. doi: 10.1017/S0007114508055670.

    Article  CAS  Google Scholar 

  31. Health Canada. Final Human Health State of the Science Report on Lead. Ottawa, ON: Health Canada, 2013.

    Google Scholar 

  32. Voorspoels S, Covaci A, Neels H. Dietary PCB intake in Belgium. Environ Toxicol Pharmacol 2008;25(2):179–82. PMID: 21783856. doi: 10.1016/j.etap.2007.10.013.

    Article  CAS  Google Scholar 

  33. Arnich N, Tard A, Leblanc JC, Le Bizec B, Narbonne JF, Maximilien R. Dietary intake of non-dioxin-like PCBs (NDL-PCBs) in France, impact of maximum levels in some foodstuffs. Regul Toxicol Pharmacol 2009;54(3):287–93. PMID: 19464333. doi: 10.1016/j.yrtph.2009.05.010.

    Article  CAS  Google Scholar 

  34. Health Canada. Priority Substances List Assessment Report - Tetrachloroethylene. Ottawa, ON: Health Canada, 1993.

    Google Scholar 

  35. Health Canada. Canadian Total Diet Study. Ottawa, ON: Health Canada, 2014. Available at: http://www.hc-sc.gc.ca/fn-an/surveill/total-diet/index-eng.php (Accessed September 8, 2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleanor Setton PhD.

Additional information

Conflict of Interest: None to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheasley, R., Keller, C.P. & Setton, E. Lifetime excess cancer risk due to carcinogens in food and beverages: Urban versus rural differences in Canada. Can J Public Health 108, e288–e295 (2017). https://doi.org/10.17269/CJPH.108.5830

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.17269/CJPH.108.5830

Key Words

Mots Clés

Navigation