Canadian Journal of Public Health

, Volume 110, Issue 1, pp 36–43 | Cite as

Limited impact of pneumococcal vaccines on invasive pneumococcal disease in Nunavik (Quebec)

  • Jean-Baptiste LeMeur
  • Brigitte Lefebvre
  • Jean-François Proulx
  • Philippe De WalsEmail author
Quantitative Research



In 2002, a mass immunization campaign using the 23-valent pneumococcal polysaccharide vaccine (PPV23) was carried out in Nunavik to control an outbreak caused by a virulent clone of serotype 1 Streptococcus pneumoniae. At the same time, the 7-valent pneumococcal conjugate vaccine (PCV7) was introduced for routine immunization of infants, replaced by the 10-valent vaccine (PCV10) in 2009, and the 13-valent vaccine (PCV13) in 2011. The objective of this study was to describe the epidemiology of invasive pneumococcal disease (IPD) in relation to pneumococcal vaccine use.


Retrospective analysis of IPD cases identified by the Quebec Public Health Laboratory during the period 1997–2016.


One hundred thirty-two IPD cases were identified during the study period. In adults, serotype 1 incidence decreased following the 2002 PPV23 mass campaign, but breakthrough cases occurred. Following PCV use, the incidence of vaccine-type IPD decreased markedly in children and also in adults but serotypes not covered by conjugate vaccines increased. The overall IPD rate was 43/100,000 person-years in the 1997–1999 pre-vaccine era and 58/100,000 person-years in 2010–2016.


The 2002 PPV23 mass immunization campaign may have contributed to control the serotype 1 outbreaks in Nunavik, but its effect was short-lived as IPDs caused by serotypes included in this vaccine continued to occur after 2005. PCV use in children induced important modifications in the epidemiology of IPD, but most of the benefits were eroded by serotype replacement.


Immunization Epidemiology Streptococcus pneumonia Pediatric vaccine Inuit 



En 2002, une campagne de vaccination de masse avec le vaccin pneumococcique polysaccharidique 23-valent (VPPS23) eut lieu au Nunavik pour contrôler une épidémie due à un clone virulent de Streptococcus pneumoniae de serotype 1. Au même moment, le vaccin pneumococcique conjugué heptavalent (VPC7) était introduit au calendrier de vaccination des nourrissons, puis fût remplacé par un vaccin décavalent (VPC10) en 2009 et par un vaccin 13-valent (VPC13) en 2011. Le but de cette étude était de décrire l’épidémiologie des infections invasives à pneumocoques (IIP) en rapport avec l’utilisation des vaccins pneumococciques.


Analyse rétrospective des cas d’IIP identifiés par le Laboratoire de Santé Publique du Québec (LSPQ) durant la période 1997-2017.


132 cas d’IIP furent identifiés au cours de la période d’étude. Chez les adultes, l’incidence des IIP dues au sérotype 1 déclina suite à la campagne de vaccination de masse de 2002 mais plusieurs cas survinrent tout de même par la suite. Après l’introduction du VPC7, l’incidence des IIP causées par des sérotypes vaccinaux baissa fortement dans toute la population mais un remplacement de sérotypes fût observé. L’incidence globale des IIP était de 43/100 000 personne-années au cours de la période pré-vaccins 1997-1999 et de 58/100 000 personne-années au cours de la période 2010-2016.


La campagne de vaccination de masse de 2002 a probablement contribué à contrôler l’épidémie d’IIP dues au sérotype 1 mais son effet fût de courte durée puisque des IIP causées par des sérotypes couverts par ce vaccin ont continué à arriver après 2005. L’introduction du VPC chez les enfants a induit des changements importants dans l’épidémiologie des IIP mais la majeure partie des gains a été perdue à cause du remplacement de sérotypes.


Immunisation Épidémiologie Streptococcus pneumonia Vaccin pédiatrique Inuit 



The authors thank all the health professionals in Nunavik who participated in the data collection.


The study was performed thanks to the financial support of the Quebec Ministry of Health and Social Services, GlaxoSmithKline, and Pfizer. Sponsors had no role in the design and conduct of the study; collection, management, analysis, and interpretation of data; and preparation of the manuscript.

Compliance with ethical standards

Conflict of interest

Philippe De Wals received research grants, honoraria, and reimbursements of travel expenses from vaccine manufacturers, including GlaxoSmithKline, Novartis, Pfizer, and Sanofi Pasteur. The remaining authors declare no conflict of interest.


  1. Bonesteel, S. (2008). Canada’s relationship with Inuit: a history of policy and program development. Ottawa: Indian and Northern Affairs Available at: Last access: July 2018.Google Scholar
  2. Canadian Institutes of Health Research, Natural Sciences and Engineering Research Council of Canada, and Social Sciences and Humanities Research Council of Canada. (2010). Tri-council policy statement: ethical conduct for research involving humans, Chapter 9. Available at: Last access: July 2018.
  3. Cléophat, J. E., Le Meur, J. B., Proulx, J. F., & De Wals, P. (2014). Uptake of pneumococcal vaccines in the Nordic region of Nunavik, province of Quebec, Canada. Canadian Journal of Public Health, 105(4), e268–e272.CrossRefGoogle Scholar
  4. Degani, N., Navarro, C., Deeks, S. L., & Lovgren, M. (2008). Invasive bacterial diseases in northern Canada. Emerging Infectious Diseases, 14, 34–40.CrossRefGoogle Scholar
  5. Douville-Fradet, M., Amini, R., Boulianne, N., Khuc, N.H., De Wals, P., Fortin, E. et al. (2011). Impact du programme d’immunisation par le vaccin pneumococcique conjugué heptavalent (VPC-7) au Québec. Québec: Institut national de santé publique du Québec, 99p. Available at:
  6. Durando, P., Faust, S. N., Fletcher, M., Krizova, P., Torres, A., & Welte, T. (2013). Experience with pneumococcal polysaccharide conjugate vaccine (conjugated to CRM197 carrier protein) in children and adults. Clinical Microbiology and Infection, 19(S1), 1–9.CrossRefGoogle Scholar
  7. Gouvernement du Québec. S-2.2. Loi sur la Santé publique. Chapitre VIII. Intoxications, infections et maladies à déclaration obligatoire. Available at : Accessed 14 October 2018.
  8. Feikin, D. R., Kagucia, E. W., Loo, J. D., Link-Gelles, R., Puhan, M. A., et al. (2013). Serotype-specific changes in invasive pneumococcal disease after pneumococcal conjugate vaccine introduction: a pooled analysis of multiple surveillance sites. PLoS Medicine, 10(9), e1001517. Scholar
  9. Hausdorff, W. P., & Hanage, W. P. (2016). Interim results of an ecological experiment — conjugate vaccination against the pneumococcus and serotype replacement. Human Vaccines & Immunotherapeutics, 12(2), 358–374. Scholar
  10. Hausdorff, W. P., Feikin, D. R., & Klugman, K. P. (2005). Epidemiological differences among pneumococcal serotypes. The Lancet Infectious Diseases, 5(2), 83–93.CrossRefGoogle Scholar
  11. Kawakami, K., Kishino, H., Kanazu, S., Toshimizu, N., Takahashi, K., Sterling, T., Wang, M., & Musey, L. (2016). Revaccination with 23-valent pneumococcal polysaccharide vaccine in the Japanese elderly is well tolerated and elicits immune responses. Vaccine, 34, 3875–3881. Available at:. Scholar
  12. Lefebvre, B., Cote, J. (2015). Programme de surveillance du pneumocoque: Rapport 2014. Québec: Institut national de santé publique du Québec. Available at :
  13. Li, Y. A., Martin, I., Tsang, R., Squires, S. G., Demczuk, W., & Desai, S. (2016). Invasive bacterial diseases in northern Canada, 2006–2013. Canada Communicable Disease Report, 42, 74–80.CrossRefGoogle Scholar
  14. MacMillan, H. I., MacMillan, A. B., Offord, D. R., & Dingle, J. L. (1996). Aboriginal health. CMAJ, 155, 1569–1576.Google Scholar
  15. Marcy, J. F., Roberts, A., Lior, L., Tam, T. W. S., & VanCaeseele, P. (2002). Outbreak of community-acquired pneumonia in Nunavut, October and November 2000. Canada Communicable Disease Report, 28, 131–138.Google Scholar
  16. Moberley, S., Holden, J., Tatham, D. P., & Andrews, R. M. (2013). Vaccines for preventing pneumococcal infection in adults (Review). The Cochrane Database of Systematic Reviews, (1) Available at:
  17. Moore, M. R., Link-Gelles, R., Schaffner, W., et al. (2015). Effect of use of 13-valent pneumococcal conjugate vaccine in children on invasive pneumococcal disease in children and adults in the USA: analysis of multisite, population-based surveillance. The Lancet Infectious Diseases, 15(3), 301–309.CrossRefGoogle Scholar
  18. Ndiaye, A. A., De Wals, P., Proulx, J. F., Ouakki, M., Jetté, L., & Déry, S. (2006). Impact of a mass immunization campaign to control an outbreak of severe respiratory infections in Nunavik, northern Canada. International Journal of Circumpolar Health, 65, 297–304.CrossRefGoogle Scholar
  19. Orenstein, W. A., Bernier, R. H., Dondero, T. J., Hinman, A. R., Marks, J. S., Bart, K. J., & Sirotkin, B. (1985). Field evaluation of vaccine efficacy. Bulletin of the World Health Organization, 63(6), 1055–1068.Google Scholar
  20. Protocole d’immunisation du Québec. Édition 6. Ministère de la santé et des services Sociaux du Québec. Available at:
  21. Proulx, J. F., Déry, S., Jetté, L., Ismaël, J., Libman, M., & De Wals, P. (2002). Pneumonia epidemic caused by a virulent strain of Streptococcus pneumoniae serotype 1 in Nunavik, Quebec. Canada Communicable Disease Report, 28, 129–131.Google Scholar
  22. Shapiro, E. D., Berg, A. T., Austrian, R., Schroeder, D., Parcells, V., Margolis, A., et al. (1991). The protective efficacy of polyvalent pneumococcal polysaccharide vaccine. The New England Journal of Medicine, 325, 1453–1460. Scholar
  23. Shigayeva, A., Rudnick, W., Green, K., Tyrrell, G., Demczuk, W. H., Gold, W. L., Gubbay, J., Jamieson, F., Plevneshi, A., Pong-Porter, S., Richardson, S., McGeer, A., & Toronto Invasive Bacterial Diseases Network. (2016). Association of serotype with respiratory presentations of pneumococcal infection, Ontario, Canada, 2003-2011. Vaccine, 34(6), 846–853.CrossRefGoogle Scholar
  24. Singleton, R. J., Butler, J. C., Bulkow, L. R., Hurlburt, D., O’Brien, K. L., Doan, W., et al. (2007). Invasive pneumococcal disease epidemiology and effectiveness of 23-valent pneumococcal polysaccharide vaccine in Alaska Native adults. Vaccine, 25, 2288–2295.CrossRefGoogle Scholar
  25. Tomczyk, S., Bennett, N. M., Stoecker, C., Gierke, R., Moore, M. R., Whitney, C. G., Hadler, S., & Pilishvili, T. (2014). Centers for Disease Control and Prevention (CDC). Use of 13-valent pneumococcal conjugate vaccine and 23-valent pneumococcal polysaccharide vaccine among adults aged ≥65 years: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR. Morbidity and Mortality Weekly Report, 63(37), 822–825 Available at: Scholar
  26. Waight, P. A., Andrews, N. J., Ladhani, N. J., et al. (2015). Effect of the 13-valent pneumococcal conjugate vaccine on invasive pneumococcal disease in England and Wales 4 years after its introduction: an observational cohort study. The Lancet Infectious Diseases, 15(6), 629.CrossRefGoogle Scholar
  27. Wenger, J., Zulz, T., Bruden, D., Singleton, R., Bruce, M. G., Bulkow, L., et al. (2010). Invasive pneumococcal disease in Alaskan children. The Pediatric Infectious Disease Journal, 29(3), 251–256.CrossRefGoogle Scholar
  28. Whitney, C. G., Pilishvili, T., Farley, M. M., Schaffner, W., Craig, A. S., Lynfield, R., et al. (2006). Effectiveness of seven-valent pneumococcal conjugate vaccine against invasive pneumococcal disease: a matched case-control study. Lancet, 368(9546), 1495–1502.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2018

Authors and Affiliations

  • Jean-Baptiste LeMeur
    • 1
    • 2
  • Brigitte Lefebvre
    • 3
  • Jean-François Proulx
    • 4
  • Philippe De Wals
    • 1
    • 2
    Email author
  1. 1.Institut National de Santé Publique du QuébecMontréalCanada
  2. 2.Département de Médecine Sociale et PréventiveUniversité LavalQuébec CityCanada
  3. 3.Laboratoire de Santé Publique du QuébecInstitut National de Santé Publique du QuébecSainte-Anne-de-BellevueCanada
  4. 4.Direction de la Santé Publique du NunavikKuujjuaqCanada

Personalised recommendations