Canadian Journal of Public Health

, Volume 110, Issue 1, pp 4–14 | Cite as

Consumption of ultra-processed foods and obesity in Canada

  • Milena Nardocci
  • Bernard-Simon Leclerc
  • Maria-Laura Louzada
  • Carlos Augusto Monteiro
  • Malek Batal
  • Jean-Claude MoubaracEmail author
Quantitative Research



To assess the association between consumption of ultra-processed foods and obesity in the Canadian population.


Cross-sectional study including 19,363 adults aged 18 years or more from the 2004 Canadian Community Health Survey, cycle 2.2. Ultra-processed food intake was estimated using daily relative energy intake of ultra-processed food (% of total energy intake) from data obtained by 24-h food recalls. Obesity was assessed using body mass index (BMI ≥ 30 kg/m2). Univariate and multivariate linear regressions were performed to describe ultra-processed food consumption according to socio-economic and demographic variables, and multivariate logistic regression was performed to verify the association between ultra-processed food consumption and obesity, adjusting for potential confounders, including socio-demographic factors, physical activity, smoking, immigrant status, residential location, and measured vs self-reported weight and height.


Ultra-processed foods make up almost half (45%) of the daily calories consumed by Canadian adults. Consumption of these foods is higher among men, younger adults, those with fewer years of formal education, smokers, those physically inactive, and Canadian-born individuals. Ultra-processed food consumption is positively associated with obesity. After adjusting for confounding factors, individuals in the highest quintile of ultra-processed food consumption were 32% more likely of having obesity compared to individuals in the first quintile (predicted OR = e0.005 × 56 = 1.32; 95% CI = 1.05–1.57).


Canadians would benefit from reducing consumption of ultra-processed foods and beverages and increasing consumption of freshly prepared dishes made from unprocessed or minimally processed foods.


Ultra-processed food Food processing Obesity Diet quality 



Cette étude vise à évaluer l’association entre la consommation d’aliments ultra-transformés et l’obésité.


Étude transversale comprenant 19 363 adultes âgés de 18 ans ou plus qui ont participé à l’Enquête sur la santé dans les collectivités canadiennes, 2004, cycle 2.2. La consommation d’aliments ultra-transformés est estimée en utilisant l’apport énergétique relatif provenant des aliments ultra-transformés du rappel alimentaire de 24 heures. L’obésité est déterminée en utilisant l’indice de masse corporelle (IMC) ≥ 30 kg/m2. Les régressions linéaires univariée et multivariée ont été réalisées pour décrire la consommation d’aliments ultra-transformés selon différents groupes socioéconomiques et démographiques, et la régression logistique multivariée a été réalisée pour évaluer l’association entre la consommation de ces aliments et l’obésité, avec ajustement selon diverses variables de contrôle, incluant les facteurs sociodémographiques, l’activité physique, le tabagisme, le statut migratoire, la zone résidentielle et le type de mesure de l’IMC.


Les aliments ultra-transformés sont largement consommés au Canada. La consommation de ces aliments est plus élevée chez les hommes, les jeunes adultes, les personnes avec moins d’années d’études, les fumeurs, les personnes physiquement inactives, et celles nées au Canada. La consommation d’aliments ultra-transformés est associée à l’obésité. Les individus du quintile supérieur de consommation d’aliments ultra-transformée ont 32 % plus de risque d’être obèses comparés aux individus du premier quintile (OR = e0.005 × 56 = 1,32; 95% CI = 1,05–1,57).


Les Canadiens pourraient bénéficier d’une réduction de la consommation de produits ultra-transformés et d’une augmentation de mets cuisinés sur place à base d’aliments peu ou pas transformés.


Aliments ultra-transformés Transformation alimentaire Obésité Qualité de l’alimentation 


Compliance with ethical standards

This study complies with current research ethics standards and was approved by the Health Research Ethics Board of the University of Montreal (17-017-CERES-D). Data access was granted by Statistics Canada, under contract (no. 13-SSH-MTL-3475) and data were analyzed at the Québec interUniversity Centre for Social Statistics in Montreal.

Supplementary material

41997_2018_130_MOESM1_ESM.docx (30 kb)
ESM 1 (DOCX 30 kb)


  1. Fardet, A. (2016). Minimally processed foods are more satiating and less hyperglycemic than ultra-processed foods: A preliminary study with 98 ready-to-eat foods. Food & Function, 7(5), 2338–2346.CrossRefGoogle Scholar
  2. Fiolet, T., Srour, B., Sellem, L., et al. (2018). Consumption of ultra-processed foods and cancer risk: Results from NutriNet-Santé prospective cohort. BMJ, 360, k322.CrossRefGoogle Scholar
  3. Flagg, L. A., Sen, B., Kilgore, M., et al. (2014). The influence of gender, age, education and household size on meal preparation and food shopping responsibilities. Public Health Nutrition, 17(9), 2061–2070.CrossRefGoogle Scholar
  4. Garriguet, D. (2007). Canadians’ eating habits. Health Reports, 18(2), 17–32.Google Scholar
  5. Garriguet, D. (2008). Impact of identifying plausible respondents on the under-reporting of energy intake in the Canadian Community Health Survey. Health Reports, 19(4), 47–55.Google Scholar
  6. Gorber, S. C., Shields, M., Tremblay, M. S., et al. (2008). The feasibility of establishing correction factors to adjust self-reported estimates of obesity. Health Reports, 19(3), 71–82.Google Scholar
  7. Health Canada (2006). Canadian Community Health Survey, Cycle 2.2, Nutrition (2004): A guide to accessing and interpreting the data. Accessed 16 Nov 2016. Available at: Accessed 16 Nov 2016.
  8. Jessri, M., Lou, W. Y., & L’Abbé, M. R. (2016). Evaluation of different methods to handle misreporting in obesity research: Evidence from the Canadian national nutrition survey. The British Journal of Nutrition, 115(1), 147–159.CrossRefGoogle Scholar
  9. Juul, F., Martinez-Steele, E., Parekh, N., et al. (2018). Ultra-processed food consumption and excess weight among US adults. The British Journal of Nutrition, 120(1), 90–100.CrossRefGoogle Scholar
  10. Lam, M. C. L., & Adams, J. (2017). Association between home food preparation skills and behaviour, and consumption of ultra-processed foods: Cross-sectional analysis of the UK National Diet and nutrition survey (2008–2009). International Journal of Behavioral Nutrition and Physical Activity, 14(1), 68.CrossRefGoogle Scholar
  11. Lavigne-Robichaud, M., Moubarac, J.-C., Lantagne-Lopez, S., et al. (2017). Diet quality indices in relation to metabolic syndrome in an indigenous Cree (Eeyouch) population in northern Québec, Canada. Public Health Nutrition, 21(1), 172–180.Google Scholar
  12. Louzada, M. L. C., Baraldi, L. G., Steele, E. M., et al. (2015). Consumption of ultra-processed foods and obesity in Brazilian adolescents and adults. Preventive Medicine, 81, 9–15.CrossRefGoogle Scholar
  13. Louzada, M. L. d. C., Ricardo, C. Z., Steele, E. M., et al. (2017). The share of ultra-processed foods determines the overall nutritional quality of diets in Brazil. Public Health Nutrition, 21(1), 94–102.Google Scholar
  14. McEntee, J. (2009). Highlighting food inadequacies: Does the food desert metaphor help this cause? British Food Journal, 111(4), 349–363.CrossRefGoogle Scholar
  15. Mendonça, R. D., Lopes, A. C. S., Pimenta, A. M., et al. (2016a). Ultra-processed food consumption and the incidence of hypertension in a Mediterranean cohort: The Seguimiento Universidad de Navarra Project. American Journal of Hypertension, 30(4), 358–366.Google Scholar
  16. Mendonça, R. D., Pimenta, A. M., Gea, A., et al. (2016b). Ultraprocessed food consumption and risk of overweight and obesity: the University of Navarra Follow-Up (SUN) cohort study. The American Journal of Clinical Nutrition, 104(5), 1433–1440.Google Scholar
  17. Monteiro, C. A., Cannon, G., Moubarac, J.-C., et al. (2017a). The UN decade of nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutrition, 21(1), 5–17.Google Scholar
  18. Monteiro, C. A., Moubarac, J.-C., Levy, R. B., et al. (2017b). Household availability of ultra-processed foods and obesity in nineteen European countries. Public Health Nutrition, 21(1), 18–26.Google Scholar
  19. Moubarac JC (2017). Ultra-processed foods in Canada: consumption, impact on diet quality and policy implications. Montréal: TRANSNUT, University of Montreal. Available at:
  20. Moubarac, J.-C., Parra, D. C., Cannon, G., et al. (2014). Food classification systems based on food processing: Significance and implications for policies and actions: A systematic literature review and assessment. Current Obesity Reports, 3(2), 256–272.CrossRefGoogle Scholar
  21. Moubarac, J.-C., Batal, M., Louzada, M. L., et al. (2016). Consumption of ultra-processed foods predicts diet quality in Canada. Appetite, 108, 512–520.Google Scholar
  22. Nasreddine, L., Tamim, H., Itani, L., et al. (2018). A minimally processed dietary pattern is associated with lower odds of metabolic syndrome among Lebanese adults. Public Health Nutrition, 21(1), 160–171.CrossRefGoogle Scholar
  23. Ogilvie, K.K., Eggleton, A. (2016). Obesity in Canada. A whole-of-society approach for a healthier Canada. Report of the standing senate committee on social affairs, science and technology. Standing senate committee on social affairs, Science and Technology. Available at:
  24. PAHO. (2015). Ultra-processed food and drink products in Latin America: trends, impact on obesity, policy implications. Washington D.C.: Pan American Health Organization Available at: Accessed 15 Aug 2016.Google Scholar
  25. PHAC. (2011). Obesity in Canada - healthy living - Public Health Agency of Canada. Public Health Agency of Canada. Available at: Accessed 10 Aug 2016.
  26. Rauber, F., Campagnolo, P. D. B., Hoffman, D. J., et al. (2015). Consumption of ultra-processed food products and its effects on children’s lipid profiles: A longitudinal study. Nutrition, Metabolism, and Cardiovascular Diseases, 25(1), 116–122.CrossRefGoogle Scholar
  27. Sanou, D., O’Reilly, E., Ngnie-Teta, I., et al. (2014). Acculturation and nutritional health of immigrants in Canada: A scoping review. Journal of Immigrant and Minority Health, 16(1), 24–34.CrossRefGoogle Scholar
  28. Statistics Canada (2008). Canadian Community Health Survey (CCHS) Cycle 2.2, 2004. Nutrition - General Health (including vitamins & mineral supplements) & 24-hour dietary recall, Master and Shared files - Derived variables documentation. Available at:
  29. Steele, E. M., & Monteiro, C. A. (2017). Association between dietary share of ultra-processed foods and urinary concentrations of phytoestrogens in the US. Nutrients, 9(3).
  30. Steele, E. M., Popkin, B. M., Swinburn, B., et al. (2017). The share of ultra-processed foods and the overall nutritional quality of diets in the US: Evidence from a nationally representative cross-sectional study. Population Health Metrics, 15(1), 6.CrossRefGoogle Scholar
  31. Tavares, L. F., Fonseca, S. C., Garcia Rosa, M. L., et al. (2012). Relationship between ultra-processed foods and metabolic syndrome in adolescents from a Brazilian Family Doctor Program. Public Health Nutrition, 15(1), 82–87.CrossRefGoogle Scholar
  32. Vandevijvere, S., Monteiro, C. A., Krebs-Smith, S. M., et al. (2013). Monitoring and benchmarking population diet quality globally: A step-wise approach. Obesity Reviews, 14(Suppl 1), 135–149.CrossRefGoogle Scholar
  33. Wolfson, J. A., & Bleich, S. N. (2015). Is cooking at home associated with better diet quality or weight-loss intention? Public Health Nutrition, 18(8), 1397–1406.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2018

Authors and Affiliations

  • Milena Nardocci
    • 1
  • Bernard-Simon Leclerc
    • 1
    • 2
  • Maria-Laura Louzada
    • 3
    • 4
  • Carlos Augusto Monteiro
    • 4
  • Malek Batal
    • 2
  • Jean-Claude Moubarac
    • 2
    Email author
  1. 1.École de Santé PubliqueUniversité de MontréalMontréalCanada
  2. 2.Département de NutritionUniversité de MontréalMontréalCanada
  3. 3.Department of Public Policies and Collective HealthFederal University of São PauloSão PauloBrazil
  4. 4.School of Public HealthUniversity of São PauloSão PauloBrazil

Personalised recommendations