Advertisement

Canadian Journal of Public Health

, Volume 109, Issue 5–6, pp 779–781 | Cite as

Carbon pricing: a win-win environmental and public health policy

  • Anshula AmbastaEmail author
  • Jonathan J. Buonocore
Commentary

Abstract

Carbon pricing is an important tool for mitigating climate change. Carbon pricing can have significant health co-benefits. Air pollution from fossil fuels leads to detrimental health effects, including premature mortality, heart attacks, hospitalization from cardiorespiratory conditions, stroke, asthma exacerbations, and absenteeism from school and work, and may also be linked to autism spectrum disorder and Alzheimer’s disease. Reduction in fossil fuel combustion through a carbon price can lead to improvements in all these areas of health. It can also improve health by encouraging active transportation choices and improving ecosystems. Furthermore, it can promote health equity in society and improve overall societal health where the revenue from carbon pricing is used as a progressive redistribution mechanism for low-income households. Hence, carbon pricing is a win-win environmental and public health policy and an important step toward achieving Canada’s emission target by 2030. However, carbon pricing has several potential pitfalls which need to be considered in the design and implementation of any such policy. As Canada moves ahead with mandatory carbon pricing this fall, it is important to monitor its impact, evaluate it objectively, and modify and complement as necessary with policies and regulations.

Keywords

Carbon pricing Carbon levy Air pollution Health co-benefits Carbon tax pitfalls 

Résumé

La tarification du carbone est un important outil d’atténuation des changements climatiques. Elle peut aussi présenter des avantages conjoints considérables sur le plan de la santé. La pollution de l’air due aux combustibles fossiles a des effets nuisibles sur la santé, dont la mortalité précoce, les crises cardiaques, les hospitalisations pour troubles respiratoires, les accidents vasculaires cérébraux, l’exacerbation de l’asthme et l’absentéisme à l’école et au travail; elle pourrait aussi être liée au trouble du spectre autistique et à la maladie d’Alzheimer. La réduction de la combustion des combustibles fossiles par le prix du carbone peut donc conduire à des améliorations de tous ces aspects de la santé. Elle peut aussi améliorer la santé encourageant les options de transport actif et en améliorant les écosystèmes. De plus, elle peut favoriser l’équité en santé dans la société et améliorer la santé sociétale globale lorsque les recettes de la tarification du carbone servent de mécanisme de redistribution progressif vers les ménages à faible revenu. La tarification du carbone est donc une formule gagnante sur le plan de l’environnement et de la santé publique, ainsi qu’un pas important pour respecter les cibles d’émission du Canada d’ici 2030. Par contre, une telle politique recèle plusieurs pièges dont il faut tenir compte dans sa conception et sa mise en œuvre. Comme le Canada va de l’avant avec la tarification obligatoire du carbone à l’automne 2018, il est important d’en surveiller les incidences, d’en faire une évaluation objective, et de la modifier ou de la compléter par les politiques et la réglementation nécessaires.

Mots-clés

Tarification du carbone Pollution de l’air Avantages conjoints pour la santé Pièges de la taxe sur le carbone 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aleksandrowicz, L., Green, R., Joy, E. J., Smith, P., & Haines, A. (2016). The impacts of dietary change on greenhouse gas emissions, land use, water use, and health: a systematic review. PLoS One, 11(11), e0165797.  https://doi.org/10.1371/journal.pone.0165797.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Buonocore, J. J., Guinto, R. R., Levy, J. I., Nystrom, S., Brown, C., & Bernstein, A. S. (2017). Air quality and health co-benefits of a carbon fee-and-rebate bill in Massachusetts (p. 27). Boston: Harvard T.H. Chan School of Public Health.Google Scholar
  3. Chen, H., Kwong, J. C., Copes, R., Tu, K., Villeneuve, P. J., van Donkelaar, A., et al. (2017). Living near major roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: a population-based cohort study. Lancet, 389(10070), 718–726.  https://doi.org/10.1016/s0140-6736(16)32399-6.CrossRefPubMedGoogle Scholar
  4. Government of B.C (2017). British Columbia’s revenue-neutral carbon tax http://www2.gov.bc.ca/gov/content/environment/climate-change/planning-and-action/carbon-tax. Accessed 13 Oct 2017.
  5. Government of Canada (2018). Technical paper: federal carbon pricing backstop. https://www.canada.ca/en/services/environment/weather/climatechange/technical-paper-federal-carbon-pricing-backstop.html. Accessed 26 April 2018.
  6. Green, F., & Denniss, R. (2018). Cutting with both arms of the scissors: the economic and political case for restrictive supply-side climate policies. Climatic Change.  https://doi.org/10.1007/s10584-018-2162-x.
  7. Jung, C. R., Lin, Y. T., & Hwang, B. F. (2015). Ozone, particulate matter, and newly diagnosed Alzheimer’s disease: a population-based cohort study in Taiwan. Journal of Alzheimer's Disease, 44(2), 573–584.  https://doi.org/10.3233/jad-140855.CrossRefPubMedGoogle Scholar
  8. Mannucci, P. M., Harari, S., Martinelli, I., & Franchini, M. (2015). Effects on health of air pollution: a narrative review. Internal and Emergency Medicine, 10(6), 657–662.  https://doi.org/10.1007/s11739-015-1276-7.CrossRefPubMedGoogle Scholar
  9. O’Gorman, M., & Jotzo, F. (2014). Impact of the Carbon Price on Australia’s electricity demand, supply and emissions (p. 69). Australia: Crawford School of Public Policy, the Australian National University.Google Scholar
  10. Raz, R., Roberts, A. L., Lyall, K., Hart, J. E., Just, A. C., Laden, F., et al. (2015). Autism spectrum disorder and particulate matter air pollution before, during, and after pregnancy: a nested case-control analysis within the Nurses’ Health Study II Cohort. Environmental Health Perspectives, 123(3), 264–270.  https://doi.org/10.1289/ehp.1408133.CrossRefPubMedGoogle Scholar
  11. Roman, H. A., Walker, K. D., Walsh, T. L., Conner, L., Richmond, H. M., Hubbell, B. J., et al. (2008). Expert judgment assessment of the mortality impact of changes in ambient fine particulate matter in the U.S. Environmental Science & Technology, 42(7), 2268–2274.CrossRefGoogle Scholar
  12. Watts, N., Adger, W. N., Agnolucci, P., Blackstock, J., Byass, P., Cai, W., et al. (2015). Health and climate change: policy responses to protect public health. Lancet, 386(10006), 1861–1914.  https://doi.org/10.1016/s0140-6736(15)60854-6.CrossRefPubMedGoogle Scholar
  13. WHO. (2016). Ambient air pollution: a global assessment of exposure and burden of disease (p. 121). Geneva: WHO Press.Google Scholar

Copyright information

© The Canadian Public Health Association 2018

Authors and Affiliations

  1. 1.Division of General Internal Medicine, Department of MedicineUniversity of CalgaryCalgaryCanada
  2. 2.Center for Health and the Global EnvironmentHarvard T.H. Chan School of Public HealthBostonUSA

Personalised recommendations