Advertisement

Canadian Journal of Public Health

, Volume 107, Issue 1, pp e56–e61 | Cite as

Quality of administrative health databases in Canada: A scoping review

  • Aynslie Hinds
  • Lisa M. LixEmail author
  • Mark Smith
  • Hude Quan
  • Claudia Sanmartin
Systematic Review
  • 33 Downloads

Abstract

OBJECTIVE: Administrative health databases are increasingly used to conduct population-based health research and surveillance; this has resulted in a corresponding growth in studies about their quality. Our objective was to describe the characteristics of published Canadian studies about administrative health database quality.

METHODS: PubMed, Scopus, and Google Advanced were searched, along with websites of relevant organizations. English-language studies that evaluated the quality of one or more Canadian administrative health databases between 2004 and 2014 were selected for inclusion. Extracted information included data quality concepts and measures, year and type of publication, type of database, and geographic origin.

SYNTHESIS: More than 3,000 publications were identified fromthe search. Twelve reports and 144 peer-reviewed papers were included. The majority (53.5%) of peer-review publications used databases from Ontario and Alberta, while 67% of the non-peer-review publications used data from multiple provinces/territories. Almost all peer-reviewed papers (97.2%) were validation studies. Hospital discharge abstracts and physician billing claims were the most frequently validated databases. Approximately half of the publications (53.0%) validated case definitions and 37.7% focused on a chronic physical health condition.

CONCLUSION: Gaps in the Canadian administrative data quality literature include a limited number of studies evaluating data from the Maritimes and across multiple jurisdictions, newer data sources, validating methods for identifying individuals with mental illness, and assessing the completeness and serviceability of the data. Data quality studies can aid researchers to understand the strengths and limitations of the data.

Key Words

Data linkage administrative health database diagnosis codes validation studies review study 

Résumé

OBJECTIF: On utilise de plus en plus les bases de données administratives sur la santé dans la recherche et la surveillance populationnelles en santé; le nombre d’études sur la qualité de ces bases de données croît lui aussi. Nous avons cherché à décrire les caractéristiques des études canadiennes publiées portant sur la qualité des bases de données administratives sur la santé.

MÉTHODE: Nous avons interrogé PubMed, Scopus et Google Advanced, ainsi que les sites Web d’organismes pertinents. Nous avons inclus les études en anglais évaluant la qualité d’une ou de plusieurs bases de données administratives canadiennes sur la santé entre 2004 et 2014. Nous en avons extrait: les concepts et les indicateurs de la qualité des données; l’année et le type de publication; le type de base de données; et l’origine géographique.

SYNTHÈSE: La recherche a permis de répertorier plus de 3 000 publications. Douze rapports et 144 communications évaluées par des pairs ont été inclus. La majorité (53,5 %) des publications à comité de lecture utilisaient des bases de données de l’Ontario et de l’Alberta, tandis que 67 % des publications sans comité de lecture utilisaient des données de plusieurs provinces ou territoires. Presque toutes les communications évaluées par des pairs (97,2 %) étaient des études de validation. Les registres des sorties des hôpitaux et les demandes de paiement des médecins étaient les bases de données les plus fréquemment validées. Environ la moitié des publications (53,0 %) validaient des définitions de cas et 37,7 % portaient sur un problème de santé physique chronique.

CONCLUSION: La documentation sur la qualité des données administratives canadiennes comporte des lacunes, car un nombre limité d’études évaluent les données des provinces maritimes ou de plusieurs provinces ou territoires; évaluent les nouvelles sources de données; valident les méthodes d’identification des personnes atteintes de maladies mentales; et évaluent l’exhaustivité et la fonctionnalité des données. Les études sur la qualité des données peuvent aider les chercheurs à comprendre les forces et les contraintes des données.

Mots Clés

maillage de données base de données administratives sur la santé codes de diagnostic études de validation étude de synthèse 

References

  1. 1.
    Bailie L, Dufour J, Hamel M. Data Quality Assurance for the Canadian Community Health Survey (CCHS). Ottawa, ON: Statistics Canada, 2002.Google Scholar
  2. 2.
    Das B, Clegg LX, Feuer EJ, Pickle LW. A new method to evaluate the completeness of case ascertainment by a cancer registry. Cancer Causes Control 2008; 19:515–25. PMID: 18270798. doi: 10.1007/s10552-008-9114-0.CrossRefGoogle Scholar
  3. 3.
    Quan H, Smith M, Bartlett-Esquilant G, Johansen H, Tu K, Lix L. Mining administrative health databases to advance medical science: Geographical considerations and untapped potential in Canada. Can J Cardiol 2012;28:152–54. PMID: 22301469. doi: 10.1016/j.cjca.2012.01.005.CrossRefGoogle Scholar
  4. 4.
    Shah BR, Lipscombe LL. Clinical diabetes research using data mining: A Canadian perspective. Can J Diabetes 2015; 39:235–38. PMID: 26004906. doi: 10.1016/j.jcjd.2015.02.005.CrossRefGoogle Scholar
  5. 5.
    Iron K, Manuel DG. Quality Assessment of Administrative Data (QuAAD): An Opportunity for Enhancing Ontario’s Health Data. Toronto, ON, 2007. Available at: http://www.ices.on.ca/~/media/Files/Atlases-Reports/2007/Quality- assessment-of-administrative-data/Full%20report.ashx (Accessed May 30, 2016).Google Scholar
  6. 6.
    Wray NP, Ashton CM, Kuykendall DH, Hollingsworth JC. Using administrative databases to evaluate the quality of medical care: A conceptual framework. Soc Sci Med 1995; 40:1707–15. doi: 10.1016/0277- 9536(94)00275-X.CrossRefGoogle Scholar
  7. 7.
    Statistics Canada. Statistics Canada Quality Guidelines. Ottawa, ON, 2009. Available at: http://www.statcan.gc.ca/pub/12-539-x/12-539-x2009001-eng. pdf (Accessed July 8, 2015).Google Scholar
  8. 8.
    Arts DGT, De Keizer NF, Scheffer G-J. Defining and improving data quality in medical registries: A literature review, case study, and generic framework. J Am Med Inform Assoc 2002; 9:600–11. doi: 10.1197/jamia.M1087.CrossRefGoogle Scholar
  9. 9.
    Canadian Institute for Health Information. The CIHI Data Quality Framework. Ottawa, ON, 2009. Available at: https://www.cihi.ca/en/data_quality_framework_2009_en.pdf (Accessed July 15, 2015).Google Scholar
  10. 10.
    Statistics Canada. Statistics Canada’s Quality Assurance Framework. Ottawa, ON, 2002. Available at: http://www.statcan.gc.ca/pub/12-586-x/12-586- x2002001-eng.pdf (Accessed May 15, 2015).Google Scholar
  11. 11.
    Azimaee M, Smith M, Lix L, Ostapyk T, Burchill C, Hong SP. MCHP Data Quality Framework. Winnipeg, MB: Manitoba Centre for Health Policy, 2013. Available at: http://umanitoba.ca/faculties/medicine/units/community_health_sciences/departmental_units/mchp/protocol/media/Data_Quality_ Framework.pdf (Accessed March 15, 2015).Google Scholar
  12. 12.
    Arksey H, O’Malley L. Scoping studies: Towards a methodological framework. Int J Soc Res Methodol 2005; 8:19–32. doi: 10.1186/1748-5908-5-69.CrossRefGoogle Scholar
  13. 13.
    Roos LL, Gupta S, Soodeen R-A, Jebamani L. Data quality in an information-rich environment: Canada as an example. Can J Aging 2005; 24:153–70. doi: 10.1353/cja.2005.0055.CrossRefGoogle Scholar
  14. 14.
    Spasoff R. Epidemiologic Methods for Health Policy. New York, NY: Oxford University Press, 1999.Google Scholar
  15. 15.
    Spiegelman D. Validation study. In: Armitage P, Colton T (Eds.), Encyclopedia of Biostatistics. West Sussex: Wiley, 2005; pp. 5656–63. doi: 10.1002/0470011815.b2a03128.Google Scholar
  16. 16.
    van Walraven C, Austin P. Administrative database research has unique characteristics that can risk biased results. J Clin Epidemiol 2012; 65:126–31. PMID: 22075111. doi: 10.1016/j.jclinepi.2011.08.002.CrossRefGoogle Scholar
  17. 17.
    Richards H. Recent data quality initiatives at CIHI. In: Ontario Health Information Management Association (OHIMA), 2006. Available at: http://www.powershow.com/view1/253b67-ZDc1Z/Recent_Data_Quality_Initiatives_at_ CIHI_powerpoint_ppt_presentation (Accessed July 20, 2015).Google Scholar
  18. 18.
    Arnason T, Wells PS, van Walraven C, Forster AJ. Accuracy of coding for possible warfarin complications in hospital discharge abstracts. Thromb Res 2006; 118:253–62. PMID: 16081144. doi: 10.1016/j.thromres.2005.06.015.CrossRefGoogle Scholar
  19. 19.
    Quan H, Li B, Saunders LD, Parsons GA, Nilsson CI, Alibhai A, et al. Assessing validity of ICD-9-CM and ICD-10 administrative data in recording clinical conditions in a unique dually coded database. Health Serv Res 2008;43:1424–41 PMID: 24843434. doi: 10.1111/j.1475-6773.2007.00822.x.CrossRefGoogle Scholar
  20. 20.
    Blackburn DF, Schnell G, Lamb DA, Tsuyuki RT, Stang MR, Wilson TW. Coding of heart failure diagnoses in Saskatchewan: A validation study of hospital discharge abstracts. J Popul Ther Clin Pharmacol 2011;18:e407–15. PMID: 21900705.PubMedGoogle Scholar
  21. 21.
    Sears JM, Bowman SM, Hogg-Johnson S, Shorter ZA. Linkage and concordance of trauma registry and hospital discharge records. J Occup Environ Med 2014; 56:878–85. PMID: 25099416. doi: 10.1097/JOM.0000000000000198.CrossRefGoogle Scholar
  22. 22.
    Waikar SS, Wald R, Chertow GM, Curhan GC, Winkelmayer WC, Liangos O, et al. Validity of International Classification of Diseases, Ninth Revision, Clinical Modification Codes for Acute Renal Failure. J Am Soc Nephrol 2006; 17:1688–94. PMID: 16641149. doi: 10.1681/ASN.2006010073.CrossRefGoogle Scholar
  23. 23.
    Jutte DP, Roos LL, Brownell MD. Administrative record linkage as a tool for public health research. Annu Rev Public Health 2011; 32:91–108. PMID: 21219160. doi: 10.1146/annurev-publhealth-031210-100700.CrossRefGoogle Scholar
  24. 24.
    Quach S, Blais C, Quan H. Administrative data have high variation in validity for recording heart failure. Can J Cardiol 2010;26:e306–12. doi: 10.1016/S0828-282X(10)70438-4.CrossRefGoogle Scholar
  25. 25.
    Lix L, Yogendran M, Burchill C, Metge C, Mckeen N, Moore D, et al. Defining and Validating Chronic Diseases: An Administrative Data Approach. Winnipeg, MB: Manitoba Centre for Health Policy, 2006.Google Scholar
  26. 26.
    Marrie RA, Yu BN, Leung S, Elliott L, Caetano P, Warren S, et al. Rising prevalence of vascular comorbidities in multiple sclerosis: Validation of administrative definitions for diabetes, hypertension, and hyperlipidemia. Mult Scler J 2012; 18:1310–19. PMID: 22328682. doi: 10.1177/1352458512437814.CrossRefGoogle Scholar
  27. 27.
    Cadieux G, Tamblyn R. Accuracy of physician billing claims for identifying acute respiratory infections in primary care. Health Serv Res 2008; 43:2223–38. PMID: 21211054. doi: 10.1186/1471-2458-11-17.CrossRefGoogle Scholar
  28. 28.
    Monfared AAT, Lelorier J. Accuracy and validity of using medical claims data to identify episodes of hospitalizations in patients with COPD. Pharmacoepidemiol Drug Saf 2006; 15:19–29. doi: 10.1002/(ISSN)1099-1557.CrossRefGoogle Scholar
  29. 29.
    De Coster C, Luis A, Taylor MC. Do administrative databases accurately measure waiting times for medical care? Evidence from general surgery. Can J Surgery 2007; 50:394–96. PMID: 18031641.Google Scholar
  30. 30.
    Cunningham CT, Cai P, Topps D, Svenson LW, Jetté N, Quan H. Mining rich health data from Canadian physician claims: Features and face validity. BMC Res Notes 2014;7:682. PMID: 25270407. doi: 10.1186/1756-0500-7-682.CrossRefGoogle Scholar
  31. 31.
    Alshammari AM, Hux J. The impact of non-fee-for-service reimbursement on chronic disease surveillance using administrative data. Can J Public Health 2009; 100:472–74. PMID: 20209744.PubMedGoogle Scholar
  32. 32.
    Metcalfe A, Lyon AW, Johnson J-A, Bernier F, Currie G, Lix LM, et al. Improving completeness of ascertainment and quality of information for pregnancies through linkage of administrative and clinical data records. Ann Epidemiol 2013; 23:444–47. PMID: 23790349. doi: 10.1016/j.annepidem.2013. 05.002.CrossRefGoogle Scholar
  33. 33.
    Li B, Quan H, Fong A, Lu M. Assessing record linkage between health care and vital statistics databases using deterministic methods. BMC Health Serv Res 2006;6:48. PMID: 16597337. doi: 10.1186/1472-6963-6-48.CrossRefGoogle Scholar
  34. 34.
    Canadian Institute for Health Information. Data Quality Documentation for External Users: Discharge Abstract Database, 2010–2011. Ottawa, ON, 2011. Available at: https://www.cihi.ca/en/dad_executive_sum_10_11_en.pdf (Accessed July 20, 2015).Google Scholar
  35. 35.
    Benchimol EI, Manuel DG, To T, Griffiths AM, Rabeneck L, Guttmann A. Development and use of reporting guidelines for assessing the quality of validation studies of health administrative data. J Clin Epidemiol 2011;64:821–29. PMID: 21194889. doi: 10.1016/j.jclinepi.2010.10.006.CrossRefGoogle Scholar
  36. 36.
    McCormick N, Lacaille D, Bhole V, Avina-Zubieta JA. Validity of myocardial infarction diagnoses in administrative databases: A systematic review. PLoS One 2014;9:e92286. PMID: 24682186. doi: 10.1371/journal.pone.0092286.CrossRefGoogle Scholar
  37. 37.
    Kephart G. Barriers to Accessing and Analyzing Health Information in Canada. Ottawa, ON, 2002. Available at: https://secure.cihi.ca/free_products/CPHI_Barriers_e.pdf (Accessed July 15, 2015).Google Scholar
  38. 38.
    Foebel AD, Hirdes JP, Heckman GA, Kergoat M-J, Patten S, Marrie RA. Diagnostic data for neurological conditions in interRAI assessments in home care, nursing home and mental health care settings: A validity study. BMC Health Serv Res 2013;13:457. PMID: 24176093. doi: 10.1186/1472-6963-13-457.CrossRefGoogle Scholar
  39. 39.
    Lix LM, Yan L, Blackburn D, Hu N, Schneider-Lindner V, Teare GF. Validity of the RAI-MDS for ascertaining diabetes and comorbid conditions in long-term care facility residents. BMC Health Serv Res 2014;14:17. PMID: 24423071. doi: 10.1186/1472-6963-14-17.CrossRefGoogle Scholar
  40. 40.
    Birtwhistle R, Williamson T. Primary care electronic medical records: A new data source for research in Canada. Can Med Assoc J 2015; 187:239–40. PMID: 25421989. doi: 10.1503/cmaj.140473.CrossRefGoogle Scholar
  41. 41.
    Wasserman RC. Electronic medical records (EMRs), epidemiology, and epistemology: Reflections on EMRs and future pediatric clinical research. Acad Pediatr 2011; 11:280–87. PMID: 21622040. doi: 10.1016/j. acap.2011.02.007.CrossRefGoogle Scholar
  42. 42.
    Hutchinson AM, Milke DL, Maisey S, Johnson C, Squires JE, Teare G, et al. The Resident Assessment Instrument-Minimum Data Set 2.0 quality indicators: A systematic review. BMC Health Serv Res 2010;10:166. PMID: 20550719. doi: 10.1186/1472-6963-10-166.CrossRefGoogle Scholar
  43. 43.
    Hudson M, Avina-Zubieta A, Lacaille D, Bernatsky S, Lix L, Jean S. The validity of administrative data to identify hip fractures is high — A systematic review. J Clin Epidemiol 2013; 66:278–85. PMID: 23347851. doi: 10.1016/j.jclinepi. 2012.10.004.CrossRefGoogle Scholar
  44. 44.
    Jolley RJ, Sawka KJ, Yergens DW, Quan H, Jetté N, Doig CJ. Validity of administrative data in recording sepsis: A systematic review. Crit Care 2015; 19:139. PMID: 25887596. doi: 10.1186/s13054-015-0847-3.CrossRefGoogle Scholar
  45. 45.
    Peabody JW, Luck J, Jain S, Bertenthal D, Glassman P. Assessing the accuracy of administrative data in health information systems. Med Care 2004;42:1066–72. doi: 10.1097/00005650-200411000-00005.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2016

Authors and Affiliations

  • Aynslie Hinds
    • 1
  • Lisa M. Lix
    • 1
    Email author
  • Mark Smith
    • 2
  • Hude Quan
    • 3
  • Claudia Sanmartin
    • 4
  1. 1.Department of Community Health SciencesUniversity of ManitobaWinnipegCanada
  2. 2.Manitoba Centre for Health PolicyUniversity of ManitobaWinnipegCanada
  3. 3.Department of Community Health SciencesUniversity of CalgaryCalgaryCanada
  4. 4.StatsCanHealth Analysis DivisionOttawaCanada

Personalised recommendations