Advertisement

Canadian Journal of Public Health

, Volume 106, Issue 5, pp e283–e289 | Cite as

Adult obesity prevalence in primary care users: An exploration using Canadian Primary Care Sentinel Surveillance Network (CPCSSN) data

  • Alanna V. Rigobon
  • Richard Birtwhistle
  • Shahriar Khan
  • David Barber
  • Suzanne Biro
  • Rachael Morkem
  • Ian Janssen
  • Tyler WilliamsonEmail author
Quantitative Research
  • 1 Downloads

Abstract

Objectives

This research examines the feasibility of using electronic medical records within the Canadian Primary Care Sentinel Surveillance Network (CPCSSN) for obesity surveillance in Canada by assessing obesity trends over time and comparing BMI distribution estimates from CPCSSN to those obtained from nationally representative surveys.

Methods

Data from 2003–2012 on patients 18 years and older (n = 216,075) were extracted from the CPCSSN database. Patient information included demographics (age and sex) and anthropometric measures (height, weight, body mass index (BMI), waist circumference, and waist-to-hip ratio). Standard descriptive statistics were used to characterize the sample, including, as appropriate, means, proportions and medians. The BMI distribution of the CPCSSN population was compared to estimates from the Canadian Community Health Survey (CCHS) and the Canadian Health Measures Survey (CHMS) for the years: 2004, 2007–2009 and 2009–2011.

Results

The estimated prevalence of obesity increased from 17.9% in 2003 to 30.8% in 2012. Obesity class I, II and III prevalence estimates from CPCSSN in 2009–2011 (18.0%, 95% CI: 17.8–18; 7.4%, 95% CI: 7.3–7.6; 4.2%, 95% CI: 4.1–4.3 respectively) were greater than those from the most recent (2009–2011) cycle of the CHMS (16.2%, 95% CI: 14–18.7; 6.3%, 95% CI: 4.6–8.5; 3.7%, 95% CI: 2.8–4.8 respectively), however these differences were not statistically significant.

Conclusion

The data from CPCSSN present a unique opportunity for longitudinal obesity surveillance among primary care users in Canada, and offer prevalence estimates similar to those obtained from nationally representative survey data.

Key Words

BMI–body mass index CPCSSN–Canadian Primary Care Sentinel Surveillance Network EMR–Electronic Medical Record obesity 

Résumé

Objectifs

Nous avons examiné la faisabilité d’utiliser les dossiers médicaux électroniques au sein du Réseau canadien de surveillance sentinelle en soins primaires (RCSSSP) pour la surveillance de l’obésité au Canada en évaluant la progression de l’obésité au fil du temps et en comparant les estimations de répartition de l’IMC du RCSSSP à celles obtenues dans des enquêtes nationales représentatives.

Méthode

Nous avons extrait de la base de données du RCSSSP les données de 2003–2012 sur les patients de 18 ans et plus (n = 216 075). Les renseignements sur les patients étaient leur profil démographique (âge et sexe) et leurs mesures anthropométriques (taille, poids, indice de masse corporelle [IMC], périmètre ombilical et rapport taille-hanches). Des statistiques descriptives types ont servi à caractériser l’échantillon, notamment, le cas échéant, les moyennes, les proportions et les médianes. La répartition de l’IMC dans la population du RCSSSP a été comparée aux estimations de l’Enquête sur la santé dans les collectivités canadiennes (ESCC) et de l’Enquête canadienne sur les mesures de la santé (ECMS) pour les années 2004, 2007–2009 et 2009–2011.

Résultats

La prévalence estimative de l’obésité est passée de 17,9 % en 2003 à 30,8 % en 2012. Les estimations de la prévalence de l’obésité de classe I, II et III dans la population du RCSSSP en 2009–2011 (18 %, IC de 95 %: 17,8–18; 7,4 %, IC de 95 %: 7,3–7,6; 4,2 %, IC de 95 %: 4,1–4,3, respectivement) étaient supérieures à celles du cycle le plus récent (2009–2011) de l’ECMS (16,2 %, IC de 95 %: 14–18,7; 6,3 %, IC de 95 %: 4,6–8,5; 3,7 %, IC de 95 %: 2,8–4,8, respectivement), mais ces différences n’étaient pas significatives.

Conclusion

Les données du RCSSSP offrent une occasion unique de faire une surveillance longitudinale de l’obésité chez les utilisateurs de soins primaires au Canada, et elles donnent des estimations de prévalence semblables à celles obtenues par les données d’enquêtes nationales représentatives.

Mots Clés

indice de masse corporelle (IMC) Réseau canadien de surveillance sentinelle en soins primaires (RCSSSP) dossier médical électronique (DME) obésité 

References

  1. 1.
    Tjepkema M. Adult obesity. Health Rep 2006;17(3):9–25. PMID: 16981483.PubMedGoogle Scholar
  2. 2.
    Katzmarzyk PT. The Canadian obesity epidemic: An historical perspective. Obes Res 2002;10(7):666–74. PMID: 12105289. doi: 10.1038/oby.2002.90.CrossRefGoogle Scholar
  3. 3.
    Statistics Canada. Canadian Health Measures Survey: Cycle 2 Data Tables. Ottawa, ON: Statistics Canada, 2012.Google Scholar
  4. 4.
    Anis AH. Zhang W, Bansback N, Guh DP. Amarsi Z, Birmingham CL. Obesity and overweight in Canada: An updated cost-of-illness study. Obes Rev 2010;11(1):31–40. PMID: 19413707. doi: 10.1111/j.1467-789X.2009.00579.x.CrossRefGoogle Scholar
  5. 5.
    Public Health Agency of Canada and Canadian Institute for Health Information. Obesity in Canada 2011. Ottawa, ON: Her Majesty the Queen in Right of Canada, 2011.Google Scholar
  6. 6.
    Luppino FS. de Wit LM. Bouvy PF. Stijnen T, Cuijpers P, Penninx BW. et al. Overweight, obesity, and depression: A systematic review and meta-analysis of longitudinal studies. Arch Gen Psychiatry 2010;67(3):220–29. PMID: 20194822. doi: 10.1001/archgenpsychiatry.2010.2.CrossRefGoogle Scholar
  7. 7.
    Orpana HM. Berthelot JM. Kaplan MS. Feeny DH. McFarland B, Ross NA. BMI and mortality: Results from a national longitudinal study of Canadian adults. Obesity 2010;18(1):214–18. PMID: 19543208. doi: 10.1038/oby.2009.191.CrossRefGoogle Scholar
  8. 8.
    Statistics Canada. Canadian Community Health Survey (CCHS)–Annual Component (CCHS), 2013. Available at: https://doi.org/www.www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&SDDS=3226&lang=en&db=imdb&adm=8&dis=2 (Accessed December 21, 2013).Google Scholar
  9. 9.
    Elgar FJ. Stewart JM. Validity of self-report screening for overweight and obesity. Evidence from the Canadian Community Health Survey. Can J Public Health 2008;99(5):423–27. PMID: 19009930.PubMedGoogle Scholar
  10. 10.
    Lau DC., Douketis JD. Morrison KM. Hramiak IM. Sharma AM. 2006 Canadian clinical practice guidelines on the management and prevention of obesity in adults and children. Can Med Assoc J 2007;176(8):S1–13. PMID: 17420481. doi: 10.1503/cmaj.061409.CrossRefGoogle Scholar
  11. 11.
    Birtwhistle R, Keshavjee K, Lambert-Lanning A, Godwin M, Greiver M, Manca D, et al. Building a Pan-Canadian primary care sentinel surveillance network: Initial development and moving forward. J Am Board Fam Med 2009; 22(4):412–22. PMID: 19587256. doi: 10.3122/jabfm.2009.04.090081.CrossRefGoogle Scholar
  12. 12.
    Statistics Canada. Canadian Health Measures Survey: Cycle 1 Data Tables. Ottawa, ON: Statistics Canada, 2009.Google Scholar
  13. 13.
    Statistics Canada. Canadian Community Health Survey, Nutrition. Ottawa, ON: Statistics Canada, 2004.Google Scholar
  14. 14.
    World Health Organization. Obesity: Preventing and Managing the Global Epidemic. Geneva: Report of a WH. Consultation on Obesity, 1998.Google Scholar
  15. 15.
    Health Canada. Canadian Guidelines for Body Weight Classification in Adults. Ottawa, ON: Health Canada Publications Centre, 2003.Google Scholar
  16. 16.
    Crespi CM. Alfonso VH. Whaley SE. Wang MC. Validity of child anthropometric measurements in the special supplemental nutrition program for women, infants, and children. Pediatr Res 2012;71(3):286–92. PMID: 22337260. doi: 10.1038/pr.2011.37.CrossRefGoogle Scholar
  17. 17.
    Arterburn D, Ichikawa L, Ludman EJ. Linde JA. Anderson E, Rohde P, et al. Validity of clinical body weight measures as substitutes for missing data in a randomized trial. Obes Res Clin Pract 2009;2(4):277–81. doi: 10.1016/j.orcp. 2008.09.002.CrossRefGoogle Scholar
  18. 18.
    SAS Institute Inc. Base SA. ® 9.3 Procedures Guide. Cary, NC: SAS Institute Inc, 2011.Google Scholar
  19. 19.
    Statistics Canada. Canadian Socioeconomic Database, 2012. Available at: https://doi.org/www.www5.statcan.gc.ca/cansim/home-accueil?langeng (Accessed December 21, 2013).Google Scholar
  20. 20.
    Statistics Canada. CANSIM Table 105-0501 Health Indicator Profile, Annual Estimates, by Age Group and Sex, Canada, Provinces, Territories, Health Regions (2007 Boundaries) and Peer Groups, Occasional [Data File], June 28, 2011. Available at: https://doi.org/www.cansim2.statcan.gc.ca/cgi-win/cnsmcgi.exe?Lang=E& RootDir=CII/&ResultTemplate=CII/CII___&Array_Pick=1&ArrayId=1050501 (Accessed November 26, 2014).Google Scholar
  21. 21.
    Canadian Institute for Health Information. Experiences with Primary Health Care in Canada. Ottawa, ON: CIHI, 2009.Google Scholar
  22. 22.
    Health Council of Canada. How Engaged Are Canadians in Their Primary Care? Results from the 2010 Commonwealth Fund International Health Policy Survey. Canadian Health Care Matters, Bulletin 5. Toronto, ON: Health Council of Canada, 2011.Google Scholar
  23. 23.
    Prentice AM. Jebb SA. Beyond body mass index. Obes Rev 2001;2(3):141–47. PMID: 12120099. doi: 10.1046/j.1467-789x.2001.00031.x.CrossRefGoogle Scholar
  24. 24.
    Nabalamba A, Millar WJ. Going to the doctor. Health Rep 2007;18(1):23–35. PMID: 17441441.PubMedGoogle Scholar
  25. 25.
    Bertakis KD. Azari R, Helms LJ. Callahan EJ. Robbins JA. Gender differences in the utilization of health care services. J Fam Pract 2000;49(2):147–52. PMID: 10718692.PubMedGoogle Scholar
  26. 26.
    Dean BB. Lam J, Natoli JL. Butler Q, Aguilar D, Nordyke RJ. Review: Use of electronic medical records for health outcomes research: A literature review. Med Care Res Rev 2009;66(6):611–38. PMID: 19279318. doi: 10.1177/ 1077558709332440.CrossRefGoogle Scholar
  27. 27.
    Jordan K, Porcheret M, Croft P. Quality of morbidity coding in general practice computerized medical records: A systematic review. Fam Pract 2004;21(4):396–412. PMID: 15249528.CrossRefGoogle Scholar
  28. 28.
    Goulet JL. Erdos J, Kancir S, Forest L, Levin FL. Wright SM. et al. Measuring performance directly using the veterans health administration electronic medical record. Med Care 2012;45(1):73–79. PMID: 17279023.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2015

Authors and Affiliations

  • Alanna V. Rigobon
    • 1
  • Richard Birtwhistle
    • 2
    • 3
  • Shahriar Khan
    • 2
  • David Barber
    • 2
  • Suzanne Biro
    • 4
  • Rachael Morkem
    • 2
  • Ian Janssen
    • 3
    • 5
  • Tyler Williamson
    • 6
    Email author
  1. 1.Faculty of Health Sciences, Life SciencesQueen’s UniversityKingstonCanada
  2. 2.Department of Family MedicineQueen’s UniversityKingstonCanada
  3. 3.Department of Public Health SciencesQueen’s UniversityKingstonCanada
  4. 4.KFL&A Public HealthKingstonCanada
  5. 5.School of Kinesiology and Health StudiesQueen’s UniversityKingstonCanada
  6. 6.Department of Community Health SciencesUniversity of CalgaryCalgaryCanada

Personalised recommendations