Canadian Journal of Public Health

, Volume 105, Issue 4, pp e233–e238 | Cite as

Food insecurity and nutritional biomarkers in relation to stature in Inuit children from Nunavik

  • Catherine M. PirkleEmail author
  • Michel Lucas
  • Renée Dallaire
  • Pierre Ayotte
  • Joseph L. Jacobson
  • Sandra W. Jacobson
  • Eric Dewailly
  • Gina Muckle
Quantitative Research


OBJECTIVES: Inuit in Canada experience alarming levels of food insecurity, but nutritional and physiological consequences are poorly documented, especially in school-age children. The objective of this study was to assess the relation of food insecurity to iron deficiency and stature in school-aged Inuit children from Nunavik (Northern Quebec).

METHODS: Food insecurity, iron deficiency, and stature were assessed in a cohort of children. Food insecurity was determined by interviewing the children’s mothers. Multiple logistic regression was used to evaluate the association of food insecurity to iron deficiency and short stature. We defined short stature as a height in the lowest tertile for age and sex, based on Canadian growth charts. The relation of food insecurity to height (cm) was analyzed with a general linear model. Statistical models controlled for age, sex, normal/overweight/obese status, prenatal lead exposure and postnatal polychlorinated biphenyls exposure.

RESULTS: Half of the children (49.7%, n=145) were food insecure, while one third were iron depleted, 12.6% had anaemia, and 8.7% had irondeficiency anaemia. The multivariate odds ratio of anaemia was 1.82 (95% CI: 0.97, 3.42, p=0.06) for food-insecure children. Prevalence of short stature was 18.7%. Food-insecure children were an average of 2 cm shorter (95% CI: -0.48, -3.17) than food-secure children (p<0.01).

CONCLUSION: In this population, food-insecure children have greater burdens of nutritional deficiencies and slower linear growth. Considering the high prevalence of food insecurity among Inuit children in Nunavik, nutritional deficiencies and adverse effects on development should be carefully monitored.

Key Terms

Food insecurity nutritional deficiencies iron growth children indigenous health 


OBJECTIFS : Les Inuits du Canada présentent des niveaux d’insécurité alimentaire alarmants dont les conséquences nutritionnelles et physiologiques sont méconnues, surtout chez les enfants d’âge scolaire. L’objectif de notre étude était d’évaluer la relation entre l’insécurité alimentaire, d’une part, et la carence en fer et la taille, d’autre part, chez les enfants inuits du Nunavik (Nord-du-Québec) en âge de fréquenter l’école.

MÉTHODE : Nous avons évalué l’insécurité alimentaire, la carence en fer et la taille dans une cohorte d’enfants. L’insécurité alimentaire a été déterminée en interviewant les mères des enfants. Par régression logistique multiple, nous avons évalué l’association entre l’insécurité alimentaire et la carence en fer et la petite taille. Nous avons défini la petite taille comme étant la taille dans le tertile inférieur pour l’âge et le sexe, selon les fiches de croissance canadiennes. Le rapport entre l’insécurité alimentaire et la taille (en centimètres) a été analysé selon un modèle linéaire général. Des modèles statistiques ont permis de rajuster les données selon l’âge, le sexe, le poids normal/le surpoids/l’obésité, l’exposition prénatale au plomb et l’exposition postnatale aux biphényles polychlorés.

RÉSULTATS : La moitié des enfants (49,7 %, n=145) étaient confrontés à l’insécurité alimentaire, le tiers des enfants étaient carencés en fer, 12,6 % faisaient de l’anémie, et 8,7 % présentaient une anémie ferriprive. Le rapport de cotes multivarié de l’anémie était de 1,82 (IC de 95 %: 0,97, 3,42, p=0,06) chez les enfants confrontés à l’insécurité alimentaire. La prévalence de la petite taille était de 18,7 %. Les enfants touchés par l’insécurité alimentaire mesuraient en moyenne 2 cm de moins (IC de 95 %: -0,48, -3,17) que les enfants épargnés par l’insécurité alimentaire (p<0,01).

CONCLUSION : Dans cette population, les enfants confrontés à l’insécurité alimentaire avaient un plus lourd fardeau de carences alimentaires et une croissance linéaire plus lente. Étant donné la forte prévalence de l’insécurité alimentaire chez les enfants inuits du Nunavik, les carences alimentaires et leurs effets indésirables sur le développement devraient être suivis attentivement.

Mots Clés

insécurité alimentaire carences alimentaires fer croissance enfant santé autochtone 


  1. 1.
    Huet C, Rosol R, Egeland, GM. The prevalence of food insecurity is high and the diet quality poor in Inuit communities. J Nutr 2012;142(3):541–47.CrossRefGoogle Scholar
  2. 2.
    WHO. Food Security. Available at: (Accessed October 17, 2013).Google Scholar
  3. 3.
    Blanchet C, Rochette L. Nutrition and food consumption among the Inuit of Nunavik, In: Nunavik Inuit Health Survey 2005. Qanuippitaa? How are we? Institut national de santé publique du Québec (INSPQ), Nunavik Regional Board of Health and Social Services (NRBHSS), 2008.Google Scholar
  4. 4.
    Tarasuk V, Mitchell A, Dachner N. Research to identify policy options to reduce food insecurity (PROOF). Household food insecurity in Canada 2011. 2013. Available at: (Accessed August 15, 2013).Google Scholar
  5. 5.
    Campbell AA, Akhter N, Sun K, De Pee S, Kraemer K, Moench-Pfanner R, et al. Relationship of household food insecurity to anaemia in children aged 6–59 months among families in rural Indonesia. Ann Trop Paediatr 2011;31(4):321–30.CrossRefGoogle Scholar
  6. 6.
    Eicher-Miller HA, Mason AC, Weaver CM, McCabe GP, Boushey, CJ. Food insecurity is associated with iron deficiency anemia in US adolescents. Am J Clin Nutr 2009;90(5):1358–71.CrossRefGoogle Scholar
  7. 7.
    Jamieson J, Weiler H, Kuhnlein H, Egeland, GM. Traditional food intake is correlated with iron stores in Canadian Inuit men. J Nutr 2012;142:764–70.CrossRefGoogle Scholar
  8. 8.
    Park K, Kersey M, Geppert J, Story M, Cutts D, Himes, JH. Household food insecurity is a risk factor for iron-deficiency anaemia in a multi-ethnic, lowincome sample of infants and toddlers. Public Health Nutr 2009;12(11):2120–28.CrossRefGoogle Scholar
  9. 9.
    Pasricha SR, Black J, Muthayya S, Shet A, Bhat V, Nagaraj S, et al. Determinants of anemia among young children in rural India. Pediatrics 2010;126(1):e140–49.CrossRefGoogle Scholar
  10. 10.
    Skalicky A, Meyers AF, Adams WG, Yang Z, Cook JT, Frank, DA. Child food insecurity and iron deficiency anemia in low-income infants and toddlers in the United States. Matern Child Health J 2006;10(2):177–85.CrossRefGoogle Scholar
  11. 11.
    Kirkpatrick SI, Tarasuk V. Food insecurity is associated with nutrient inadequacies among Canadian adults and adolescents. J Nutr 2008;138(3):604–12.CrossRefGoogle Scholar
  12. 12.
    Pacey A, Weiler H, Egeland, GM. Low prevalence of iron-deficiency anaemia among Inuit preschool children: Nunavut Inuit Child Health Survey, 2007–2008. Public Health Nutr 2011;14(8):1415–23.CrossRefGoogle Scholar
  13. 13.
    Ramakrishnan U, Nguyen P, Martorell R. Effects of micronutrients on growth of children under 5 y of age: Meta-analyses of single and multiple nutrient interventions. Am J Clin Nutr 2009;89(1):191–203.CrossRefGoogle Scholar
  14. 14.
    Chwang LC, Soemantri AG, Pollitt E. Iron supplementation and physical growth of rural Indonesian children. Am J Clin Nutr 1988;47(3):496–501.CrossRefGoogle Scholar
  15. 15.
    Baig-Ansari N, Rahbar MH, Bhutta ZA, Badruddin, SH. Child’s gender and household food insecurity are associated with stunting among young Pakistani children residing in urban squatter settlements. Food Nutr Bull 2006;27(2):114–27.CrossRefGoogle Scholar
  16. 16.
    Psaki S, Bhutta ZA, Ahmed T, Ahmed S, Bessong P, Islam M, et al. Household food access and child malnutrition: Results from the eightcountry MAL-ED study. Population Health Metrics 2012;10(1):24.CrossRefGoogle Scholar
  17. 17.
    Saha KK, Frongillo EA, Alam DS, Arifeen SE, Persson LA, Rasmussen, KM. Household food security is associated with growth of infants and young children in rural Bangladesh. Public Health Nutr 2009;12(9):1556–62.CrossRefGoogle Scholar
  18. 18.
    Dallaire F, Dewailly E, Muckle G, Ayotte P. Time trends of persistent organic pollutants and heavy metals in umbilical cord blood of Inuit infants born in Nunavik (Québec, Canada) between 1994 and 2001. Environ Health Perspect 2003;111(13):1660–64.CrossRefGoogle Scholar
  19. 19.
    Muckle G, Ayotte P, Dewailly EE, Jacobson SW, Jacobson, JL. Prenatal exposure of the northern Québec Inuit infants to environmental contaminants. Environ Health Perspect 2001;109(12):1291–99.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Jacobson JL, Jacobson SW, Muckle G, Kaplan-Estrin M, Ayotte P, Dewailly E. Beneficial effects of a polyunsaturated fatty acid on infant development: Evidence from the Inuit of Arctic Quebec. J Pediatr 2008;152:356–64.CrossRefGoogle Scholar
  21. 21.
    Bickel G, Nord M, Hamilton W, Cook J. Guide to Measuring Household Food Security, Revised 2000. Alexandria, VA: Office of Analysis, Nutrition, and Evaluation, Food and Nutrition Service, USDA.Google Scholar
  22. 22.
    WHO. Serum ferritin concentrations for the assessment of iron status and iron deficiency in populations. Geneva, Switzerland: World Health Organization, 2011.Google Scholar
  23. 23.
    WHO. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Geneva: WHO, 2011.Google Scholar
  24. 24.
    Maire B, Delpeuch F. Nutrition indicators for development: Reference Guide. Montpellier, France: Institut de Recherche pour le Développement, 2005.Google Scholar
  25. 25.
    Dietitians of Canada. WHO Growth Charts for Canada. 2010. Available at: (Accessed October 17, 2013).Google Scholar
  26. 26.
    Cole TJ, Bellizzi MC, Flegal KM, Dietz, WH. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000;320(7244):1240–43.CrossRefGoogle Scholar
  27. 27.
    Hammond, PB. Exposure of humans to lead. Ann Rev Pharmacol Toxicol 1977;17:197–214.CrossRefGoogle Scholar
  28. 28.
    Engle-Stone R, Nankap M, Ndjebayi AO, Erhardt JG, Brown, KH. Plasma ferritin and soluble transferrin receptor concentrations and body iron stores identify similar risk factors for iron deficiency but result in different estimates of the national prevalence of iron deficiency and iron-deficiency anemia among women and children in Cameroon. J Nutr 2013;143(3):369–77.CrossRefGoogle Scholar
  29. 29.
    Prentice A, Schoenmakers I, Laskey MA, de Bono S, Ginty F, Goldberg, GR. Nutrition and bone growth and development. Proc Nutr Soc 2006;65(4):348–60.CrossRefGoogle Scholar
  30. 30.
    Plante C, Blanchet C, Rochette L, O’Brien, HT. Prevalence of anemia among Inuit women in Nunavik, Canada. Int J Circumpolar Health 2011;70(2):154–65.CrossRefGoogle Scholar
  31. 31.
    Balarajan Y, Ramakrishnan U, Ozaltin E, Shankar A, Subramanian S. Anaemia in low-income and middle-income countries. Lancet 2012;378(9809):2123–35.CrossRefGoogle Scholar
  32. 32.
    Lawn J, Harvey D. Nutrition and Food Security in Kangiqsujuaq, Nunavik: Baseline survey for the food mail pilot project. Ottawa, ON: Minister of Indian Affairs and Northern Development, 2004.Google Scholar

Copyright information

© The Canadian Public Health Association 2014

Authors and Affiliations

  • Catherine M. Pirkle
    • 1
    Email author
  • Michel Lucas
    • 1
    • 2
  • Renée Dallaire
    • 1
  • Pierre Ayotte
    • 1
    • 2
  • Joseph L. Jacobson
    • 3
  • Sandra W. Jacobson
    • 3
  • Eric Dewailly
    • 1
  • Gina Muckle
    • 1
    • 4
  1. 1.Population Health & Optimal Health Practices Research UnitCHU de Québec Research CentreQuébec CityCanada
  2. 2.Department of Social & Preventive MedicineUniversité LavalQuebec CityCanada
  3. 3.Department of Psychiatry and Behavioral NeurosciencesWayne State University School of MedicineDetroitUSA
  4. 4.School of PsychologyUniversité LavalQuebec CityCanada

Personalised recommendations