Advertisement

Canadian Journal of Public Health

, Volume 105, Issue 4, pp e245–e250 | Cite as

A cross-cultural comparison of body composition, physical fitness and physical activity between regional samples of Canadian and English children and adolescents

  • Christine VossEmail author
  • Gavin Sandercock
  • Joan Wharf Higgins
  • Heather Macdonald
  • Lindsay Nettlefold
  • Patti-Jean Naylor
  • Heather McKay
Quantitative Research
  • 1 Downloads

Abstract

OBJECTIVES: Cross-cultural comparisons in children’s body composition, health-related fitness and physical activity (PA) are rare due to a shortage of comparable data, but such comparisons may help avert worrying global prevalence in childhood obesity, and declining fitness and PA.

METHODS: We drew samples of Canadian and English children (10 years, n=1630, 50% boys) and adolescents (15 years, n=1406, 56% boys) from three separate, regional studies that conducted comparable school-based assessments (2006-2011). For each age-sex group, we assessed betweencountry differences for body composition (mass, height, BMI, waist circumference), cardiorespiratory fitness (CRF; 20 m shuttle run test), strength (handgrip) and self-reported PA. We used multiple regression to investigate whether between-country differences in fitness were explained by body composition and PA.

RESULTS: At any age, Canadian boys and girls were taller, heavier, and had greater BMIs and waist circumferences. English children had higher CRF than Canadians, which was explained by differences in body composition and PA. Canadian children were significantly stronger, partly due to greater body size. There were no between-country differences in adolescent boys. Canadian adolescent girls reported more PA than their English counterparts, but neither PA nor body size explained why Canadian adolescent girls had greater CRF or strength.

CONCLUSION: Future cross-cultural studies of PA should include indices of growth and fitness to better understand the relationship between intricate differences in PA and health outcomes.

Key Words

Physical fitness physical endurance muscle strength body mass index exercise 

Résumé

OBJECTIFS : Rares sont les comparaisons interculturelles de la composition corporelle des enfants, de leur forme physique liée à la santé et de leur activité physique en raison du manque de données comparables, mais de telles comparaisons peuvent aider à éviter la menace de la prévalence mondiale inquiétante de l’obésité juvénile, ainsi que le déclin de la forme physique et de l’activité physique.

MÉTHODE : Nous avons extrait des échantillons d’enfants (10 ans, n=1 630, 50 % de garçons) et d’adolescents (15 ans, n=1 406, 56 % de garçons) canadiens et anglais de trois études régionales distinctes ayant mené des évaluations en milieu scolaire comparables (2006-2011). Pour chaque groupe d’âge et de sexe, nous avons évalué les différences entre les deux pays pour ce qui est de la composition corporelle (masse, taille, IMC, périmètre ombilical), de la capacité cardiorespiratoire (CCR; course navette sur 20 mètres), de la force (poigne) et de l’activité physique autodéclarée. Par régression multiple, nous avons cherché à déterminer si les différences entre les deux pays au chapitre de la forme physique s’expliquaient par la composition corporelle et l’activité physique.

RÉSULTATS : À tout âge, les garçons et les filles canadiens étaient plus grands, plus lourds, et avaient un IMC et un périmètre ombilical plus élevés. Les enfants anglais avaient une CCR supérieure à celle des Canadiens, ce qui s’expliquait par les différences dans leur composition corporelle et leur activité physique. Les enfants canadiens étaient significativement plus forts, en partie en raison de leur plus grande corpulence. Il n’y avait pas de différences entre les garçons adolescents des deux pays. Chez les filles, les adolescentes canadiennes ont déclaré faire davantage d’activité physique que les Anglaises, mais ni l’activité physique, ni la corpulence n’expliquaient pourquoi les adolescentes canadiennes avaient une CCR ou une force supérieures.

CONCLUSION : Les futures études interculturelles de l’activité physique devraient inclure des indices de croissance et de forme physique pour que l’on comprenne mieux le lien entre les différences subtiles des niveaux d’activité physique et les résultats sanitaires.

Mots Clés

aptitude physique endurance physique force musculaire indice de masse corporelle exercice physique 

References

  1. 1.
    Friedemann C, Heneghan C, Mahtani K, Thompson M, Perera R, Ward, AM. Cardiovascular disease risk in healthy children and its association with body mass index: Systematic review and meta-analysis. BMJ 2012;345:e4759.CrossRefGoogle Scholar
  2. 2.
    Lobstein T, Baur L, Uauy R. Obesity in children and young people: A crisis in public health. Obes Rev 2004;5 Suppl 1:4–104.CrossRefGoogle Scholar
  3. 3.
    Stamatakis E, Wardle J, Cole, TJ. Childhood obesity and overweight prevalence trends in England: Evidence for growing socioeconomic disparities. Int J Obes (Lond) 2010;34:41–47.CrossRefGoogle Scholar
  4. 4.
    Colley RC, Garriguet D, Janssen I, Craig CL, Clarke J, Tremblay, MS. Physical activity of Canadian children and youth: Accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep 2011;22(1).Google Scholar
  5. 5.
    Ekelund U, Anderssen SA, Froberg K, Sardinha LB, Andersen LB, Brage S. Independent associations of physical activity and cardiorespiratory fitness with metabolic risk factors in children: The European youth heart study. Diabetologia 2007;50(9):1832–40.CrossRefGoogle Scholar
  6. 6.
    Steele RM, Brage S, Corder K, Wareham NJ, Ekelund U. Physical activity, cardiorespiratory fitness, and the metabolic syndrome in youth. J Appl Physiol 2008;105(1):342–51.CrossRefGoogle Scholar
  7. 7.
    Artero EG, Ruiz JR, Ortega FB, Espana-Romero V, Vicente-Rodriguez G, Molnar D, et al. Muscular and cardiorespiratory fitness are independently associated with metabolic risk in adolescents: The HELENA study. Pediatr Diabetes 2011;12(8):704–12.CrossRefGoogle Scholar
  8. 8.
    Benson AC, Torode ME, Singh, MA. Muscular strength and cardiorespiratory fitness is associated with higher insulin sensitivity in children and adolescents. Int J Pediatr Obes 2006;1(4):222–31.CrossRefGoogle Scholar
  9. 9.
    Ogunleye AA, Sandercock GR, Voss C, Eisenmann JC, Reed K. Prevalence of elevated mean arterial pressure and how fitness moderates its association with BMI in youth. Public Health Nutr 2013;16(11):2046–54.CrossRefGoogle Scholar
  10. 10.
    Reed KE, Warburton DER, Whitney CL, McKay, HA. Secular changes in shuttlerun performance: A 23-year retrospective comparison of 9- to 11-year-old children. Pediatr Exerc Sci 2006;18:364–73.CrossRefGoogle Scholar
  11. 11.
    Tremblay MS, Shields M, Laviolette M, Craig CL, Janssen I, Gorber, SC. Fitness of Canadian children and youth: Results from the 2007–2009 Canadian Health Measures Survey. Health Rep 2010;21(1).Google Scholar
  12. 12.
    Cohen D, Voss C, Taylor M, Delextrat A, Ogunleye A, Sandercock G. Ten-year secular changes in muscular fitness in English children. Acta Paediatr 2011;100(10):e175-77.Google Scholar
  13. 13.
    Sandercock G, Voss C, McConnell D, Rayner P. Ten year secular declines in the cardiorespiratory fitness of affluent English children are largely independent of changes in body mass index. Arch Dis Child 2010;95(1):46–47.CrossRefGoogle Scholar
  14. 14.
    Olds TS, Ridley K, Tomkinson, GR. Declines in aerobic fitness: Are they only due to increasing fatness? Med Sport Sci 2007;50:226–40.CrossRefGoogle Scholar
  15. 15.
    Castro-Pinero J, Artero EG, Espana-Romero V, Ortega FB, Sjostrom M, Suni J, et al. Criterion-related validity of field-based fitness tests in youth: A systematic review. Br J Sports Med 2010;44(13):934–43.CrossRefGoogle Scholar
  16. 16.
    Willms JD, Tremblay MS, Katzmarzyk, PT. Geographic and demographic variation in the prevalence of overweight Canadian children. Obes Res 2003;11(5):668–73.CrossRefGoogle Scholar
  17. 17.
    Craig R, Mindell J. Health Survey for England 2006. Volume 2: Obesity and other risk factors in children. Leeds: The Information Centre, 2008.Google Scholar
  18. 18.
    Department for Communities and Local Government. The English Indices of Deprivation 2007. Summary. Wetherby, UK: Communities and Local Government Publications, 2007.Google Scholar
  19. 19.
    Naylor PJ, Macdonald HM, Reed KE, McKay, HA. Action Schools! BC: A socioecological approach to modifying chronic disease risk factors in elementary school children. Prev Chronic Dis 2006;3(2):A60.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Wharf Higgins J, Riecken KB, Voss C, Naylor PJ, Gibbons S, Rhodes R, et al. Health promoting secondary schools: Community-based research examining voice, choice, and the school setting. J Child Adolesc Behav 2013;1(3):1–8.Google Scholar
  21. 21.
    Cole TJ, Bellizzi MC, Flegal KM, Dietz, WH. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000;320(7244):1240–43.CrossRefGoogle Scholar
  22. 22.
    Leger LA, Mercier D, Gadoury C, Lambert J. The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci 1988;6(2):93–101.CrossRefGoogle Scholar
  23. 23.
    Kowalski KC, Crocker RE, Donen, RM. The Physical Activity Questionnaire for Older Children (PAC-C) and Adolescents (PAQ-A) Manual. Saskatoon, SK: University of Saskatchewan, 2004.Google Scholar
  24. 24.
    Voss C, Ogunleye AA, Sandercock, GR. Physical Activity Questionnaire for Children and Adolescents: English norms and cut-points. Pediatr Int 2013;55(4):498–507.CrossRefGoogle Scholar
  25. 25.
    Kohl HW, 3rd, Craig CL, Lambert EV, Inoue S, Alkandari JR, Leetongin G, et al. The pandemic of physical inactivity: Global action for public health. Lancet 2012;380(9838):294–305.CrossRefGoogle Scholar
  26. 26.
    de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ 2007;85(9):660–67.CrossRefGoogle Scholar
  27. 27.
    Freedman DS, Khan LK, Serdula MK, Srinivasan SR, Berenson, GS. Secular trends in height among children during 2 decades: The Bogalusa Heart Study. Arch Pediatr Adolesc Med 2000;154(2):155–61.CrossRefGoogle Scholar
  28. 28.
    Habicht JP, Martorell R, Yarbrough C, Malina RM, Klein, RE. Height and weight standards for preschool children. How relevant are ethnic differences in growth potential? Lancet 1974;1(7858):611–14.CrossRefGoogle Scholar
  29. 29.
    Boreham C, Twisk J, Murray L, Savage M, Strain JJ, Cran G. Fitness, fatness, and coronary heart disease risk in adolescents: The Northern Ireland Young Hearts Project. Med Sci Sports Exerc 2001;33(2):270–74.CrossRefGoogle Scholar
  30. 30.
    Tremblay MS, Gray CE, Akinroye K, Harrington DM, Katzmarzyk PT, Lambert EV, et al. Physical activity of children: A global matrix of grades comparing 15 countries. J Phys Act Health 2014;11(Suppl 1):S113–S125.CrossRefGoogle Scholar
  31. 31.
    Sherriff A, Wright CM, Reilly JJ, McColl J, Ness A, Emmett P. Age- and sexstandardised lean and fat indices derived from bioelectrical impedance analysis for ages 7–11 years: Functional associations with cardio-respiratory fitness and grip strength. Br J Nutr 2009;101(12):1753–60.CrossRefGoogle Scholar
  32. 32.
    Hogrel JY, Decostre V, Alberti C, Canal A, Ollivier G, Josserand E, et al. Stature is an essential predictor of muscle strength in children. BMC Musculoskelet Disord 2012;13:176.CrossRefGoogle Scholar
  33. 33.
    Malina RM, Bouchard C, Bar-Or O. Chapter 29. Secular trends in growth, maturation, and performance. In: Growth, Maturation and Physical Activity. 2nd, ed. Champaign, IL: Human Kinetics, 2004; 651–76.Google Scholar
  34. 34.
    Cale L, Harris J. Fitness testing in physical education - a misdirected effort in promoting healthy lifestyles and physical activity? Physical Education and Sport Pedagogy 2009;14(1):89–108.CrossRefGoogle Scholar
  35. 35.
    Espana-Romero V, Ortega FB, Vicente-Rodriguez G, Artero EG, Rey JP, Ruiz, JR. Elbow position affects handgrip strength in adolescents: Validity and reliability of Jamar, DynEx, and TKK dynamometers. J Strength Cond Res 2010;24(1):272–77.CrossRefGoogle Scholar
  36. 36.
    Welk GJ, Corbin CB, Dale D. Measurement issues in the assessment of physical activity in children. Res Q Exerc Sport 2000;71(2 Suppl):S59–73.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2014

Authors and Affiliations

  • Christine Voss
    • 1
    • 2
    Email author
  • Gavin Sandercock
    • 3
  • Joan Wharf Higgins
    • 4
  • Heather Macdonald
    • 1
    • 2
  • Lindsay Nettlefold
    • 2
  • Patti-Jean Naylor
    • 4
  • Heather McKay
    • 2
    • 5
  1. 1.Department of OrthopaedicsUniversity of British ColumbiaVancouverCanada
  2. 2.Centre for Hip Health and MobilityRobert H.N. Ho Research Centre, Centre for Hip Health and MobilityVancouverCanada
  3. 3.School of Biological SciencesUniversity of EssexColchesterUK
  4. 4.School of Exercise SciencePhysical and Health EducationVictoriaCanada
  5. 5.Departments of Orthopaedics and Family PracticeUniversity of British ColumbiaVancouverCanada

Personalised recommendations