Advertisement

Canadian Journal of Public Health

, Volume 108, Issue 4, pp 355–361 | Cite as

Correlates of accelerometer-assessed physical activity and sedentary time among adults with type 2 diabetes

  • Nonsikelelo Mathe
  • Terry Boyle
  • Fatima Al Sayah
  • Clark Mundt
  • Jeff K. Vallance
  • Jeffrey A. Johnson
  • Steven T. JohnsonEmail author
Quantitative Research
  • 1 Downloads

Abstract

OBJECTIVES: The aims of this study were to describe the volume and patterns of objectively assessed sedentary behaviour, light intensity physical activity (LPA) and moderate-vigorous physical activity (MVPA), and to examine socio-demographic correlates, among adults living with type 2 diabetes.

METHODS: Participants (n = 166) wore an accelerometer (Actigraph® GT3X+) for seven consecutive days during waking hours and completed a questionnaire. Physical activity (PA) and sedentary time were described, and multivariable linear regression was used to estimate associations between socio¬demographic characteristics and sedentary time and PA.

RESULTS: Participants, 46% of whom were female, had a mean age of 65.4 years (standard deviation (SD) = 9.5), body mass index (BMI) of 31.5 (6.6) kg/m1 2 and had been living with diabetes for an average of 13.1 (7.6) years. Participants were sedentary for 543.6 minutes/day, spent 273.4 minutes/day and 22.4 minutes/day in LPA and MVPA respectively. BMI was associated with increased sedentary time and reduced LPA (-2.5 minutes/day, 95% CI: -4.33 to -0.70) and MVPA (-0.62 minutes/day, 95% CI: -1.05 to -0.18) time. Compared with males, females had more LPA (34.4 minutes/day, 95% CI: 10.21-58.49) and less MVPA (-6.2 minutes/day, 95% CI: -12.04 to -0.41) time. Unemployed participants had 30.05 minutes more MVPA (95% CI: 3.35-56.75) than those who were employed or homemakers, and those not reporting income had 13 minutes/day more MVPA time than participants in the lowest income category (95% CI: 3.46-22.40).

CONCLUSION: Adults living with type 2 diabetes were not sufficiently active and were highly sedentary. Our results emphasize the need for more research exploring the diabetes-related health outcomes of sedentary behaviour and physical inactivity among people living with type 2 diabetes.

Key Words

Accelerometer sedentary behaviour physical activity diabetes mellitus type 2 

Mots Clés

accéléromètre comportement sédentaire activité physique diabète de type 2 

Résumé

OBJECTIFS : Décrire le volume et les tendances des comportements sédentaires, de l’activité physique légère (APL) et de l’activité physique modérée à vigoureuse (APMV), évalués de façon objective, et en examiner les corrélats sociodémographiques chez les adultes vivant avec le diabète de type 2.

MÉTHODE : Les participants (n = 166) ont porté un accéléromètre (Actigraph® GT3X+) durant les heures de veille pendant sept jours consécutifs et ont rempli un questionnaire. Nous avons décrit l’activité physique (AP) et le temps de sédentarité et procédé par régression linéaire multivariée pour estimer les associations entre le profil sociodémographique, le temps de sédentarité et l’AP.

RÉSULTATS : Les participants, dont 46 % étaient des femmes, avaient en moyenne 65,4 ans (écart-type = 9,5), un indice de masse corporelle (IMC) de 31,5 (6,6) kg/m2, et vivaient avec le diabète depuis 13,1 (7,6) ans en moyenne. Les participants étaient sédentaires pendant 543,6 minutes/jour et consacraient 273,4 minutes/jour et 22,4 minutes/jour à l’APL et à l’APMV, respectivement. L’IMC était associé au temps de sédentarité accru, à l’APL réduite (-2,5 minutes/jour, IC de 95 %: -4,33 à -0,70) et à l’APMV réduite (-0,62 minutes/jour, IC de 95 %: -1,05 à -0,18). Comparées aux hommes, les femmes faisaient plus d’APL (34,4 minutes/jour, IC de 95 %: 10,21 à 58,49) et moins d’APMV (-6,2 minutes/jour, IC de 95 %: -12,04 à -0,41). Les participants sans emploi faisaient 30,05 minutes d’APMV de plus (IC de 95 %: 3,35 à 56,75) que les personnes employées ou au foyer, et les participants qui ne déclaraient aucun revenu faisaient 13 minutes/jour de plus d’APMV que les participants de la plus faible catégorie de revenu (IC de 95 %: 3,46 à 22,40).

CONCLUSION : Les adultes vivant avec le diabète de type 2 étaient insuffisamment actifs et hautement sédentaires. Nos résultats soulignent le besoin de pousser la recherche sur les résultats sanitaires (liés au diabète) des comportements sédentaires et de l’inactivité physique chez les personnes vivant avec le diabète de type 2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rivellese AA, Riccardi G, Vaccaro O. Cardiovascular risk in women with diabetes. Nutr Metab Cardiovasc Dis 2010;20(6):474–80. PMID: 20621459. doi: 10.1016/j.numecd.2010.01.008.CrossRefGoogle Scholar
  2. 2.
    Goff DCJr, Gerstein HC, Ginsberg HN, Cushman WC, Margolis KL, Byington RP, et al. Prevention of cardiovascular disease in persons with type 2 diabetes mellitus: Current knowledge and rationale for the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Am J Cardiol 2007; 99(12A):4i–20i. PMID: 17599424. doi: 10.1016/j.amjcard.2007.03.002.CrossRefGoogle Scholar
  3. 3.
    Haas L, Maryniuk M, Beck J, Cox CE, Duker P, Edwards L, et al. National standards for diabetes self-management education and support. Diabetes Care 2014;37(Suppl 1):S144–53. PMID: 24357210. doi: 10.2337/dc14-S144.CrossRefGoogle Scholar
  4. 4.
    Franz MJ, Monk A, Barry B, McClain K, Weaver T, Cooper N, et al. Effectiveness of medical nutrition therapy provided by dietitians in the management of non-insulin-dependent diabetes mellitus: A randomized, controlled clinical trial. JAmDietAssoc 1995;95(9):1009–17. PMID: 7657902. doi: 10.1016/S0002-8223(95)00276-6.Google Scholar
  5. 5.
    Sigal RJ, Kenny GP, Wasserman DH, Castaneda-Sceppa C, White, RD. Physical activity/exercise and type 2 diabetes: A consensus statement from the American Diabetes Association. Diabetes Care 2006;29(6):1433–38. PMID: 16732040. doi: 10.2337/dc06-9910.CrossRefGoogle Scholar
  6. 6.
    Dempsey PC, Larsen RN, Sethi P, Sacre JW, Straznicky NE, Cohen ND, et al. Benefits for type 2 diabetes of interrupting prolonged sitting with brief bouts of light walking or simple resistance activities. Diabetes Care 2016;39(6):964–72. PMID: 27208318. doi: 10.2337/dc15-2336.CrossRefGoogle Scholar
  7. 7.
    Falconer CL, Page AS, Andrews RC, Cooper, AR. The potential impact of displacing sedentary time in adults with type 2 diabetes. Med Sci Sports Exerc 2015;47(10):2070–75. PMID: 26378943. doi: 10.1249/MSS.00000000000 00651.CrossRefGoogle Scholar
  8. 8.
    Viir R, Veraksits A. Discussion of “letter to the editor: Standardized use of the terms sedentary and sedentary behaviours” — Sitting and reclining are different states. Appl Physiol Nutr Metab 2012;37(6):1256; discussion 1257. PMID: 22994364. doi: 10.1139/h2012-123.CrossRefGoogle Scholar
  9. 9.
    Hamilton MT, Hamilton DG, Zderic, TW. Sedentary behavior as a mediator of type 2 diabetes. Med Sport Sci 2014;60:11–26. PMID: 25226797. doi: 10.1159/000357332.CrossRefGoogle Scholar
  10. 10.
    Henson J, Dunstan DW, Davies MJ, Yates T. Sedentary behaviour as a new behavioural target in the prevention and treatment of type 2 diabetes. Diabetes Metab Res Rev 2016;32(Suppl 1):213–20. PMID: 26813615. doi: 10.1002/dmrr.2759.CrossRefGoogle Scholar
  11. 11.
    Morrato EH, Hill JO, Wyatt HR, Ghushchyan V, Sullivan, PW. Physical activity in U.S. adults with diabetes and at risk for developing diabetes, 2003. Diabetes Care 2007;30(2):203–9. PMID: 17259482. doi: 10.2337/dc06-1128.CrossRefGoogle Scholar
  12. 12.
    Nelson KM, Reiber G, Boyko, EJ. Diet and exercise among adults with type 2 diabetes: Findings from the Third National Health and Nutrition Examination Survey (NHANES III). Diabetes Care 2002;25(10):1722–28. PMID: 12351468. doi: 10.2337/diacare.25.10.1722.CrossRefGoogle Scholar
  13. 13.
    Plotnikoff RC, Taylor LM, Wilson PM, Courneya KS, Sigal RJ, Birkett N, et al. Factors associated with physical activity in Canadian adults with diabetes. Med Sci Sports Exerc 2006;38(8):1526–34. PMID: 16888470. doi: 10.1249/01.mss.0000228937.86539.95.CrossRefGoogle Scholar
  14. 14.
    Rossen J, Yngve A, Hagströmer M, Brismar K, Ainsworth BE, Iskull C, et al. Physical activity promotion in the primary care setting in pre- and type 2 diabetes — The Sophia Step Study, an RCT. BMC Public Health 2015;15:647. PMID: 26164092. doi: 10.1186/s12889-015-1941-9.CrossRefGoogle Scholar
  15. 15.
    Boyle T, Lynch BM, Courneya KS, Vallance, JK. Agreement between accelerometer-assessed and self-reported physical activity and sedentary time in colon cancer survivors. Support Care Cancer 2015;23(4):1121–26. PMID: 25301224. doi: 10.1007/s00520-014-2453-3.CrossRefGoogle Scholar
  16. 16.
    Hamasaki H, Noda M, Moriyama S, Yoshikawa R, Katsuyama H, Sako A, et al. Daily physical activity assessed by a triaxial accelerometer is beneficially associated with waist circumference, serum triglycerides, and insulin resistance in Japanese patients with prediabetes or untreated early type 2 diabetes. J Diabetes Res 2015;2015:526201. PMID: 26064983. doi: 10.1155/2015/526201.CrossRefGoogle Scholar
  17. 17.
    Healy GN, Wijndaele K, Dunstan DW, Shaw JE, Salmon J, Zimmet PZ, et al. Objectively measured sedentary time, physical activity, and metabolic risk: The Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diabetes Care 2008;31(2):369–71. PMID: 18000181. doi: 10.2337/dc07-1795.CrossRefGoogle Scholar
  18. 18.
    Al Sayah F, Majumdar SR, Soprovich A, Wozniak L, Johnson ST, Qiu W, et al. The Alberta’s Caring for Diabetes (ABCD) Study: Rationale, design and baseline characteristics of a prospective cohort of adults with type 2 diabetes. Can J Diabetes 2015;39(Suppl 3):S113–19. PMID: 26243463. doi: 10.1016/j.jcjd.2015.05.005.CrossRefGoogle Scholar
  19. 19.
    Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc 1998;30(5):777–81. PMID: 9588623. doi: 10.1097/00005768-199805000-00021.CrossRefGoogle Scholar
  20. 20.
    Matthews CE, Chen KY, Freedson PS, Buchowski MS, Beech BM, Pate RR, et al. Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am J Epidemiol 2008;167(7):875–81. PMID: 18303006. doi: 10.1093/aje/kwm390.CrossRefGoogle Scholar
  21. 21.
    Dunstan DW, Kingwell BA, Larsen R, Healy GN, Cerin E, Hamilton MT, et al. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care 2012;35(5):976–83. PMID: 22374636. doi: 10.2337/ dc11-1931.CrossRefGoogle Scholar
  22. 22.
    US Department of Health. Physical Activity Guidelines Advisory Committee report, 2008. To the Secretary of Health and Human Services. Part A: Executive summary. Nutr Rev 2009;67(2):114–20. PMID: 19178654. doi: 10.1111/j.1753-4887.2008.00136.x.CrossRefGoogle Scholar
  23. 23.
    Sigal RJ, Armstrong MJ, Colby P, Kenny GP, Plotnikoff RC, Reichert SM, et al. Physical activity and diabetes. Can JDiabetes 2013;37(Suppl 1):S40–44. PMID: 24070962. doi: 10.1016/j.jcjd.2013.01.018.CrossRefGoogle Scholar
  24. 24.
    Boyle T, Lynch BM, Ransom EK, Vallance, JK. Volume and correlates of objectively measured physical activity and sedentary time in non-Hodgkin lymphoma survivors. Psychooncology 2017;26(2):239–47. PMID: 26555235. doi: 10.1002/pon.4027.CrossRefGoogle Scholar
  25. 25.
    Godin G, Shephard, RJ. A simple method to assess exercise behavior in the community. Can J Appl Sport Sci 1985;10(3):141–46. PMID: 4053261.PubMedGoogle Scholar
  26. 26.
    Jacobs DR Jr, Ainsworth BE, Hartman TJ, Leon, AS. A simultaneous evaluation of 10 commonly used physical activity questionnaires. Med Sci Sports Exerc 1993;25(1):81–91. PMID: 8423759. doi: 10.1249/00005768-199301000-00012.CrossRefGoogle Scholar
  27. 27.
    Heiss V, Petosa R. Correlates of physical activity among adults with type 2 diabetes: A systematic literature review. Am J Health Educ 2014;45(5):278–87. doi: 10.1080/19325037.2014.933139.CrossRefGoogle Scholar
  28. 28.
    Spangler JG, Konen, JC. Predicting exercise and smoking behaviors in diabetic and hypertensive patients. Age, race, sex, and psychological factors. Arch Fam Med 1993;2(2):149–55. PMID: 8275184. doi: 10.1001/archfami.2.2.149.CrossRefGoogle Scholar
  29. 29.
    Hays LM, Clark, DO. Correlates of physical activity in a sample of older adults with type 2 diabetes. Diabetes Care 1999;22(5):706–12. PMID: 10332670. doi: 10.2337/diacare.22.5.706.CrossRefGoogle Scholar
  30. 30.
    Healy GN, Winkler EA, Brakenridge CL, Reeves MM, Eakin, EG. Accelerometerderived sedentary and physical activity time in overweight/obese adults with type 2 diabetes: Cross-sectional associations with cardiometabolic biomarkers. PLoS ONE 2015;10(3):e0119140. PMID: 25775249. doi: 10.1371/journal.pone.0119140.CrossRefGoogle Scholar
  31. 31.
    Hsueh MC, Liao Y, Chang, SH. Associations of total and domain-specific sedentary time with type 2 diabetes in Taiwanese older adults. J Epidemiol 2016;26(7):348–54. PMID: 26875598. doi: 10.2188/jea.JE20150095.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2017

Authors and Affiliations

  • Nonsikelelo Mathe
    • 1
    • 2
    • 3
  • Terry Boyle
    • 4
    • 5
    • 6
  • Fatima Al Sayah
    • 2
  • Clark Mundt
    • 2
  • Jeff K. Vallance
    • 1
  • Jeffrey A. Johnson
    • 2
  • Steven T. Johnson
    • 1
    • 2
    Email author
  1. 1.Faculty of Health DisciplinesAthabasca UniversityAthabascaCanada
  2. 2.Alliance for Canadian Health Outcomes Research in Diabetes, School of Public HealthUniversity of AlbertaEdmontonCanada
  3. 3.School of Clinical MedicineUniversity of WitwatersrandJohannesburgSouth Africa
  4. 4.Cancer Control ResearchBritish Columbia Cancer AgencyVancouverCanada
  5. 5.School of Population and Public HealthUniversity of British ColumbiaVancouverCanada
  6. 6.Centre for Medical ResearchThe University of Western AustraliaPerthAustralia

Personalised recommendations