Canadian Journal of Public Health

, Volume 106, Issue 6, pp e355–e361 | Cite as

Applications of geographic information systems in public health: A geospatial approach to analyzing MMR immunization uptake in Alberta

  • Kristin M. EcclesEmail author
  • Stefania Bertazzon
Quantitative Research


Objective: This study evaluates the temporal, spatial, and spatio-temporal variation of immunization rates for measles, mumps and rubella (MMR) immunization in the province of Alberta. The study uses yearly immunization rate data for Health Zones and Local Geographic Areas (2004–2012), which were obtained from Alberta Health’s Interactive Health Data Application (IHDA).

Methods: Spatial analyses include a global spatial analysis, Moran’s I, and local indicators of spatial association (LISA) analysis - Getis and Ord’s G* - to identify clusters of high or low immunization rates. Spatial methods are then applied to a time series analysis to examine how the immunization rates change over time in conjunction with space.

Results: Mapped results indicate decreasing immunization rates over time for the majority of the province where most local geographic areas (LGAs) fall short of the 95% herd immunity threshold. Clusters of high immunization rates in the metropolitan centres, and clusters of low immunization rates in the southern and northern region of the province exist spatially and spatio-temporally. Over time, the high rate clusters are decreasing in size and the low rate clusters are increasing.

Conclusion: This research provides a localized geographic approach to assessing MMR immunization rates in Alberta. Findings from this research can be used to target public health interventions to specific areas that exhibit the lowest immunization rates. These results can also be used for hypothesis generation in future research on barriers to immunization uptake.

Key Words

Immunizations MMR public health GIS spatial analysis 

Mots Clés

immunisations vaccinations ROR santé publique SIG analyse spatiale 


Objectifs: Cette étude évalue la variation temporelle, spatiale et spatiotemporelle des taux de vaccination contre la rougeole, les oreillons et la rubéole (RRO) dans la province de l’Alberta. L’étude utilise les données annuelles des taux de vaccination pour les Zones de Santé et les Zones Géographiques Locales (2004–2012), qui ont été obtenus à partir du « Interactive Health Data Application » du Gouvernement de l’Alberta.

Méthodologies: Les analyses spatiales comprennent une analyse spatiale globale, une analyse « Moran’s I » et une analyse d’indicateurs locaux d’association spatiale–Getis et Ord’s G*–afin d’identifier des groupes de taux de vaccination élevés ou faibles. Une analyse de séries chronologiques est ensuite appliquée afin d’examiner la façon dont les taux de vaccination changent au fil du temps en collaboration avec leur localisation spatiale.

Résultats: Les résultats indiquent une baisse des taux de vaccination au fil du temps pour la majorité de la province où la plupart des zones géographiques locales (LGA) tombent à court du seuil de l’immunité grégaire de 95 %. Des groupes de taux de vaccination élevés sont trouvés en centres métropolitains et des groupes de taux faibles sont trouvés en régions du sud et du nord de la province. Ces groupes de taux élevés et faibles existent spatialement et spatio-temporellement. Au fils du temps, les groupes de taux élevés diminuent en taille et les groupes de taux faibles augmentent en taille.

Conclusions: Cette étude fournit une approche géographique localisé afin d’évaluer les taux de vaccination ROR en Alberta. Les résultats de cette recherche peuvent être utilisés pour cibler les interventions de santé publique à des régions spécifiques qui démontrent les plus faibles taux de vaccination. Ces résultats peuvent également servir d’inspiration pour la génération d’hypothèses d’études futures sur les obstacles liés à l’immunisation.


  1. 1.
    Shane A, Hiebert J, Sherrard L, Deehan H. Inside this issue: Measles in Canada. Can Commun Dis Rep 2014;40:12.Google Scholar
  2. 2.
    Matkin A, Simmonds K, Suttorp V. Measles-containing vaccination rates in southern Alberta. Can Commun Dis Rep. 2014;40:12.CrossRefGoogle Scholar
  3. 3.
    Diekema DS, American Academy of Pediatrics Committee on Bioethics. Responding to parental refusals of immunization of children. Pediatrics 2005;115(5):1428–31. PMID: 15867060. doi: 10.1542/peds.2005-0316.CrossRefGoogle Scholar
  4. 4.
    Omer SB, Salmon DA, Orenstein WA, deHart MP, Halsey N. Vaccine refusal, mandatory immunization, and the risks of vaccine-preventable diseases. N Engl J Med 2009;360(19):1981–88. PMID: 19420367. doi: 10.1056/ NEJMsa0806477.CrossRefGoogle Scholar
  5. 5.
    Fox JP, Elveback L, Scott W, Gatewood L, Ackerman E. Herd immunity: Basic concept and relevance to public health immunization practices. In: Schneider D, Lilienfeld DE (Eds.), Public Health: The Development of a Discipline, Vol 2, Twentieth-Century Challenges. New Brunswick, NJ: Rutgers University Press, 2011; 463 p.Google Scholar
  6. 6.
    PHAC. Canadian Immunization Guide. 2015. Available at: (Accessed May 9, 2014).Google Scholar
  7. 7.
    Omer SB, Enger KS, Moulton LH, Halsey NA, Stokley S, Salmon DA. Geographic clustering of nonmedical exemptions to school immunization requirements and associations with geographic clustering of pertussis. Am J Epidemiol 2008;168(12):1389–96. PMID: 18922998. doi: 10.1093/aje/kwn263.CrossRefGoogle Scholar
  8. 8.
    Getis A. A history of the concept of spatial autocorrelation: A geographer’s perspective. Geogr Anal 2008;40(3):297–309. doi: 10.1111/j.1538-4632.2008. 00727.x.CrossRefGoogle Scholar
  9. 9.
    Government of Alberta. Alberta Health and Wellness, Surveillance & Assessment Branch Interactive Health Data Application - Immunization Coverage Rates. 2010. Available at: Rates.pdf (Accessed May 10, 2014).Google Scholar
  10. 10.
    Government of Alberta. Alberta Health, Surveillance & Assessment Branch Interactive Health Data Application - Immunization Coverage Rate. 2015. Available at: method.pdf (Accessed May 9, 2014).Google Scholar
  11. 11.
    IHDA. Data Methods; 2012. Available at: (Accessed May 13, 2014).Google Scholar
  12. 12.
    Tobler WR. A computer movie simulating urban growth in the Detroit region. Econ Geogr 1970;46:234–40. doi: 10.2307/143141.CrossRefGoogle Scholar
  13. 13.
    Crighton EJ, Elliott SJ, Kanaroglou P, Moineddin R, Upshur REG. Spatiotemporal analysis of pneumonia and influenza hospitalizations in Ontario, Canada. Geospat Health 2008;2(2):191–202. PMID: 18686268. doi: 10.4081/ gh.2008.243.CrossRefGoogle Scholar
  14. 14.
    Anselin L. Local indicators of spatial association—LISA. Geogr Anal 1995;27(2):93–115. doi: 10.1111/j.1538-4632.1995.tb00338.x.CrossRefGoogle Scholar
  15. 15.
    Getis A, Aldstadt J. Constructing the spatial weights matrix using a local statistic. In: Anselin L, Ray SJ (Eds.), Perspectives on Spatial Data Analysis. Berlin, Heidelberg: Springer, 2010; pp. 147–63.CrossRefGoogle Scholar
  16. 16.
    Alberta Health. Alberta Immunization Strategy 2007-2017. 2007. Available at: (Accessed May 1, 2014).Google Scholar
  17. 17.
    Kulig JC, Meyer CJ, Hill SA, Handley CE, Lichtenberger SM, Myck SL. Refusals and delay of immunization within Southwest Alberta. Understanding alternative beliefs and religious perspectives. Can J Public Health 2002;93:109–12. PMID: 11963513.PubMedGoogle Scholar
  18. 18.
    Kershaw T, Suttorp V Simmonds K, St Jean T. Outbreak of measles in a nonimmunizing population, Alberta 2013. Can Commun Dis Rep 2014;40(12):243.CrossRefGoogle Scholar
  19. 19.
    Openshaw, S. The modifiable areal unit problem. Geo Abstracts University of East Anglia, 1984.Google Scholar

Copyright information

© The Canadian Public Health Association 2015

Authors and Affiliations

  1. 1.Geography DepartmentUniversity of CalgaryCalgaryCanada

Personalised recommendations