Skip to main content
Log in

Ultrastructural and morphological analysis during progression of Bowen disease reveals a complex interplay between hyperkeratosis, cytokeratin expression, host immunity and amyloid deposition

  • Investigative Report
  • Published:
European Journal of Dermatology

Abstract

Background

Bowen disease, one of the common skin cancers, is defined as squamous cell carcinoma in situ, characterized by atypical keratinocytes occupying the full thickness of the epidermis, and predominantly occurs on sun-protected skin. There is no existing data on the impact of tumour and immune cell interactions or cytokeratin expression on the pathology of Bowen disease.

Objectives

We analysed dynamic changes in cytokeratin expression and immune cell composition during the development and progression of Bowen disease.

Materials & Methods

Analysis was performed using immunohistochemistry and electron microscopy for samples from 140 patients with Bowen disease and 20 patients with invasive squamous cell carcinoma. We evaluated cytokeratin expression, the number of infiltrating immune cells and amyloid deposition by immunohistochemistry, and the ultrastructural relationship between tumour cells and immune cells by electron microscopy.

Results

The results showed that the expression of CK14 is associated with tumour progression, keratotic status and amyloid deposition and that the expression of CK10 is associated with accumulation of immune cells in Bowen disease. The findings of electron microscopy indicated repeated battles involving immune cells in response to tumour invasion.

Conclusion

The expression of cytokeratins, hyperkeratosis, inflammatory infiltration and amyloid deposition are useful findings indicating the “stage” in Bowen disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Moll R, Divo M, Langbein L. The human keratins: biology and pathology. Histochem Cell Biol 2008; 129: 705–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Paramio JM, Casanova ML, Segrelles C, Mittnacht S, Lane EB, Jorcano JL. Modulation of cell proliferation by cytokeratins K10 and K16. Mol Cell Biol 1999; 19: 3086–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang X, Yin M, Zhang LJ. Keratin 6, 16 and 17-critical barrier alarmin molecules in skin wounds and psoriasis. Cells 2019; 8: 807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Komine M, Okinaga M, Takeda F, et al. Patterns of basal cell keratin 14 expression in Bowen’s disease: a possible marker for tumour progression. Br J Dermatol 2001; 145: 223–8.

    Article  CAS  PubMed  Google Scholar 

  5. Sharma P, Alsharif S, Fallatah A, Chung BM. Intermediate filaments as effectors of cancer development and metastasis: a focus on keratins, vimentin, and nestin. Cells 2019; 8: 497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chu PG, Weiss LM. Keratin expression in human tissues and neoplasms. Histopathology 2002; 40: 403–39.

    Article  CAS  PubMed  Google Scholar 

  7. Cheah MT, Chen JY, Sahoo D, et al. CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proc Natl Acad Sci U S A 2015; 112: 4725–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roth W, Kumar V, Beer HD, et al. Keratin 1 maintains skin integrity and participates in an inflammatory network in skin through interleukin-18. J Cell Sci 2012; 125: 5269–79.

    CAS  PubMed  Google Scholar 

  9. Lessard JC, Pina-Paz S, Rotty JD, et al. Keratin 16 regulates innate immunity in response to epidermal barrier breach. Proc Natl Acad Sci U S A 2013; 110: 19537–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chisiki M, Kawada A, Akiyama M, et al. Bowen’s disease showing spontaneous complete regression associated with apoptosis. Br J Dermatol 1999; 140: 939–44.

    Article  CAS  PubMed  Google Scholar 

  11. Neagu TP, Ţigliş M, Botezatu D, et al. Clinical, histological and therapeutic features of Bowen’s disease. Rom J Morphol Embryol 2017; 58: 33–40.

    PubMed  Google Scholar 

  12. Murata Y, Kumano K, Sashikata T. Partial spontaneous regression of Bowen’s disease. Arch Dermatol 1996; 132: 429–32.

    Article  CAS  PubMed  Google Scholar 

  13. Higaki-Mori H, Ito A, Sugita K, Yoshida Y, Yamamoto O. Metastatic amelanotic melanomas showing spontaneous regression after skin biopsies. J Dermatol 2017; 44: e19–20.

    Article  PubMed  Google Scholar 

  14. Migden MR, Rischin D, Schmults CD, et al. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N Engl J Med 2018; 379: 341–51.

    Article  CAS  PubMed  Google Scholar 

  15. Weber JS, D’Angelo SP, Minor D, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CT-LA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 2015; 16: 375–84.

    Article  CAS  PubMed  Google Scholar 

  16. Gettinger S, Rizvi NA, Chow LQ, et al. Nivolumab monotherapy for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol 2016; 34: 2980–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Badoual C, Hans S, Merillon N, et al. PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res 2013; 73: 128–38.

    Article  CAS  PubMed  Google Scholar 

  18. Bellmunt J, Mullane SA, Werner L, et al. Association of PD-L1 expression on tumor-infiltrating mononuclear cells and overall survival in patients with urothelial carcinoma. Ann Oncol 2015; 26: 812–7.

    Article  CAS  PubMed  Google Scholar 

  19. Farhood B, Najafi M, Mortezaee K. CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol 2019; 234: 8509–21.

    Article  CAS  PubMed  Google Scholar 

  20. Lee MM, Wick MM. Bowen’s disease. Clin Dermatol 1993; 11: 43–6.

    Article  CAS  PubMed  Google Scholar 

  21. Arlette JP, Trotter MJ. Squamous cell carcinoma in situ of the skin: history, presentation, biology and treatment. Australas J Dermatol 2004; 45: 1–9; quiz 10.

    Article  PubMed  Google Scholar 

  22. Bowen JT. Centennial paper. May 1912 (J Cutan Dis Syph 1912;30:241-255). Precancerous dermatoses: a study of two cases of chronic atypical epithelial proliferation. By John T. Bowen, M.D., Boston. Arch Dermatol 1983; 119: 243–60.

    Article  CAS  PubMed  Google Scholar 

  23. Elder DE MD, Scolyer RA, Willemze R. WHO Classification of Skin Tumors. Lyon, France: International Agency for Research on Cancer, 2018.

    Google Scholar 

  24. Bath-Hextall FJ, Matin RN, Wilkinson D, Leonardi-Bee J. Interventions for cutaneous Bowen’s disease. Cochrane Database Syst Rev 2013; 2013: Cd007281.

    PubMed  PubMed Central  Google Scholar 

  25. Moreno G, Chia AL, Lim A, Shumack S. Therapeutic options for Bowen’s disease. Australas J Dermatol 2007; 48: 1–8; quiz 9–10.

    Article  PubMed  Google Scholar 

  26. Lee MM, Wick MM. Bowen’s disease. CA Cancer J Clin 1990; 40: 237–42.

    Article  CAS  PubMed  Google Scholar 

  27. Aslan F, Demirkesen C, Cağatay P, Tüzüner N. Expression of cytokeratin subtypes in intraepidermal malignancies: a guide for differentiation. J Cutan Pathol 2006; 33: 531–8.

    Article  PubMed  Google Scholar 

  28. Böer-Auer A, Jones M, Lyasnichaya OV. Cytokeratin 10-negative nested pattern enables sure distinction of clonal seborrheic keratosis from pagetoid Bowen’s disease. J Cutan Pathol 2012; 39: 225–33.

    Article  PubMed  Google Scholar 

  29. Abbas O, Richards JE, Yaar R, Mahalingam M. Stem cell markers (cytokeratin 15, cytokeratin 19 and p63) in in situ and invasive cutaneous epithelial lesions. Mod Pathol 2011; 24: 90–7.

    Article  CAS  PubMed  Google Scholar 

  30. Machiels JP, Specenier P, Krauß J, et al. A proof of concept trial of the anti-EGFR antibody mixture Sym004 in patients with squamous cell carcinoma of the head and neck. Cancer Chemother Pharmacol 2015; 76: 13–20.

    Article  CAS  PubMed  Google Scholar 

  31. Uhlig R, Abboud M, Gorbokon N, et al. Cytokeratin 10 (CK10) expression in cancer: a tissue microarray study on 11,021 tumors. Ann Diagn Pathol 2022; 60: 152029.

    Article  PubMed  Google Scholar 

  32. Gao XL, Wu JS, Cao MX, et al. Cytokeratin-14 contributes to collective invasion of salivary adenoid cystic carcinoma. PloS One 2017; 12: e0171341.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ackerman AB. Opposing views of 2 academies about the nature of solar keratosis. Cutis 2003; 71: 391–5.

    PubMed  Google Scholar 

  34. Aldehlawi H, Usman S, Lalli A, et al. Serum lipids, retinoic acid and phenol red differentially regulate expression of keratins K1, K10 and K2 in cultured keratinocytes. Sci Rep 2020; 10: 4829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Abashev TM, Metzler MA, Wright DM, Sandell LL. Retinoic acid signaling regulates Krt5 and Krt14 independently of stem cell markers in submandibular salivary gland epithelium. Dev Dyn 2017; 246: 135–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Verma AK, Slaga TJ, Wertz PW, Mueller GC, Boutwell RK. Inhibition of skin tumor promotion by retinoic acid and its metabolite 5,6-epoxyretinoic acid. Cancer Res 1980; 40: 2367–71.

    CAS  PubMed  Google Scholar 

  37. Szymański L, Skopek R, Palusińska M, et al. Retinoic acid and its derivatives in skin. Cell 2020; 9.

  38. Alshareeda AT, Soria D, Garibaldi JM, et al. Characteristics of basal cytokeratin expression in breast cancer. Breast Cancer Res Treat 2013; 139: 23–37.

    Article  CAS  PubMed  Google Scholar 

  39. Sousa B, Paredes J, Milanezi F, et al. P-cadherin, vimentin and CK14 for identification of basal-like phenotype in breast carcinomas: an immunohistochemical study. Histol Histopathol 2010; 25: 963–74.

    PubMed  Google Scholar 

  40. Maeda I, Tajima S, Kanemaki Y, Tsugawa K, Takagi M. Use of immunohistochemical analysis of CK5/6, CK14, and CK34betaE12 in the differential diagnosis of solid papillary carcinoma in situ from intraductal papilloma with usual ductal hyperplasia of the breast. SAGE Open Med 2018; 6: 2050312118811542.

    Article  PubMed  PubMed Central  Google Scholar 

  41. McGinn O, Ward AV, Fettig LM, et al. Cytokeratin 5 alters β-catenin dynamics in breast cancer cells. Oncogene 2020; 39: 2478–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fu Q, Chen N, Ge C, et al. Prognostic value of tumor-infiltrating lymphocytes in melanoma: a systematic review and meta-analysis. Oncoimmunology 2019; 8: 1593806.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kuwahara T, Hazama S, Suzuki N, et al. Intratumoural-infiltrating CD4 + and FOXP3 + T cells as strong positive predictive markers for the prognosis of resectable colorectal cancer. Br J Cancer 2019; 121: 659–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li F, Sun Y, Huang J, Xu W, Liu J, Yuan Z. CD4/CD8 + T cells, DC subsets, Foxp3, and IDO expression are predictive indictors of gastric cancer prognosis. Cancer Med 2019; 8: 7330–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stanton SE, Disis ML. Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J Immunother Cancer 2016; 4: 59.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms. Yuko Edano, Ms. Miwako Kobayashi and Ms. Asami Moriyama for the assistance with immunohistochemistry and special staining.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Goto.

Ethics declarations

Conflicts of interest: Hiroyuki Goto has received funding for this research from MSD K.K.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goto, H., Sugita, K., Horie, T. et al. Ultrastructural and morphological analysis during progression of Bowen disease reveals a complex interplay between hyperkeratosis, cytokeratin expression, host immunity and amyloid deposition. Eur J Dermatol 33, 207–217 (2023). https://doi.org/10.1684/ejd.2023.4497

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1684/ejd.2023.4497

Key words

Navigation