Skip to main content
Log in

Evaluation of the heat sensitivity of Trichophyton rubrum and Trichophyton interdigitale

  • Investigative Report
  • Published:
European Journal of Dermatology

Abstract

Background

Onychomycosis affects up to 50% of patients in the older population.

Objectives

This study aimed to explore heat sensitivity of Trichophyton rubrum and Trichophyton interdigitale as pathogens of onychomycosis.

Materials & Methods

The fungi were heated in sterile saline solution up to 100°C for five or 10 minutes with or without additional previous treatment with 1% ciclopirox solution or chitinase and 1,3 β-galactidase or for 45 minutes at 40°C or 60°C with washing powder. Subsequently, the fungi were cultured and regrowth was assessed after one week.

Results

After heating T. rubrum for five minutes at 60°C, growth was completely inhibited. After heating T. interdigitale for five minutes at 60°C, all of the samples regrew, and at 95°C, none of the samples regrew. No difference between five and 10-minute heating was observed. Previous incubation with 1% ciclopirox solution for 24 hours inhibited the growth of T. rubrum completely. T. interdigitale was still able to regrow to 100% after five minutes at 40°C, to 33% after 60°C, and to 22% after 80°C. Incubation for 45 minutes with washing powder solution at 40°C or 60°C did not lead to significant growth reduction of T. rubrum or interdigitale. Two hours incubation with β-1,3-glucanase and chitinase prior to five minutes of heating to 60°C and 80°C reduced the heat resistance of T. interdigitale; growth was inhibited in 56% and 100% of the samples, respectively.

Conclusion

The heat resistance of T. rubrum and interdigitale should be considered using non-medical thermal treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Hay RJ, Johns NE, Williams HC, et al. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. J Invest Dermatol 2014; 134: 1527–34.

    Article  CAS  PubMed  Google Scholar 

  2. Burzykowski T, Molenberghs G, Abeck D, et al. High prevalence of foot diseases in Europe: results of the Achilles Project. Mycoses 2003; 46: 496–505.

    Article  CAS  PubMed  Google Scholar 

  3. Papini M, Cicoletti M, Fabrizi V, Landucci P. Skin and nail mycoses in patients with diabetic foot. G Ital Dermatol Venereol 2013; 148: 603–08.

    CAS  PubMed  Google Scholar 

  4. Gupta AK, Stec N, Summerbell RC, et al. Onychomycosis: a review. J Eur Acad Dermatol Venereol 2020; 34: 1972–90.

    Article  CAS  PubMed  Google Scholar 

  5. Solis-Arias MP, Garcia-Romero MT. Onychomycosis in children. A review. Int J Dermatol 2017; 56: 123–30.

    Article  PubMed  Google Scholar 

  6. Gupta AK, Mays RR. The impact of onychomycosis on quality of life: a systematic review of the available literature. Skin Appendage Disord 2018; 4: 208–16.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Katsambas A, Abeck D, Haneke E, et al. The effects of foot disease on quality of life: results of the Achilles Project. J Eur Acad Dermatol Venereol 2005; 19: 191–5.

    Article  CAS  PubMed  Google Scholar 

  8. Warshaw EM, Foster JK, Cham PM, Grill JP, Chen SC. NailQoL: a quality-of-life instrument for onychomycosis. Int J Dermatol 2007; 46: 1279–86.

    Article  PubMed  Google Scholar 

  9. Effendy I, Lecha M, Feuilhade de Chauvin M, Di Chiacchio N, Baran R, European Onychomycosis O. Epidemiology and clinical classification of onychomycosis. J Eur Acad Dermatol Venereol 2005; 19: 8–12.

    Article  PubMed  Google Scholar 

  10. Nenoff P, Kruger C, Paasch U, Ginter-Hanselmayer G. Mycology–an update part 3: dermatomycoses: topical and systemic therapy. J Dtsch Dermatol Ges 2015; 13: 387–410; quiz 1.

    PubMed  Google Scholar 

  11. Lipner SR, Scher RK. Onychomycosis: treatment and prevention of recurrence. J Am Acad Dermatol 2019; 80: 853–67.

    Article  PubMed  Google Scholar 

  12. Scher RK, Breneman D, Rich P, et al. Once-weekly fluconazole (150, 300, or 450 mg) in the treatment of distal subungual onychomycosis of the toenail. J Am Acad Dermatol 1998; 38: S77–86.

    Article  CAS  PubMed  Google Scholar 

  13. Ricardo JW, Lipner SR. Safety of current therapies for onychomycosis. Expert Opin Drug Saf 2020; 19: 1395–408.

    Article  CAS  PubMed  Google Scholar 

  14. Karsai S, Jager M, Oesterhelt A, et al. Treating onychomycosis with the short-pulsed 1064-nm-Nd:YAG laser: results of a prospective randomized controlled trial. J Eur Acad Dermatol Venereol 2017; 31: 175–80.

    Article  CAS  PubMed  Google Scholar 

  15. Kim TI, Shin MK, Jeong KH, et al. A randomised comparative study of 1064 nm Neodymium-doped yttrium aluminium garnet (Nd:YAG) laser and topical antifungal treatment of onychomycosis. Mycoses 2016; 59: 803–10.

    Article  CAS  PubMed  Google Scholar 

  16. Bristow IR. The effectiveness of lasers in the treatment of onychomycosis: a systematic review. J Foot Ankle Res 2014; 7: 34.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ma W, Si C, Kasyanju Carrero LM, et al. Laser treatment for onychomycosis: a systematic review and meta-analysis. Medicine (Baltimore) 2019; 98: e17948.

    Article  PubMed  Google Scholar 

  18. Sigurgeirsson B, Olafsson JH, Steinsson JT, Kerrouche N, Sidou F. Efficacy of amorolfine nail lacquer for the prophylaxis of onychomycosis over 3 years. J Eur Acad Dermatol Venereol 2010; 24: 910–5.

    Article  CAS  PubMed  Google Scholar 

  19. Bhatta AK, Keyal U, Wang X, Gellen E. A review of the mechanism of action of lasers and photodynamic therapy for onychomycosis. Lasers Med Sci 2017; 32: 469–74.

    Article  PubMed  Google Scholar 

  20. Bornstein E, Hermans W, Gridley S, Manni J. Near-infrared photoinactivation of bacteria and fungi at physiologic temperatures. Photochem Photobiol 2009; 85: 1364–74.

    Article  CAS  PubMed  Google Scholar 

  21. Kim YR, Lee YW, Choe YB, Ahn KJ. Lack of antifungal effect of 1,064-nm long pulse Nd:YAG laser on the growth of Trichophyton rubrum. Lasers Med Sci 2015; 30: 1811–3.

    Article  PubMed  Google Scholar 

  22. Paasch U, Mock A, Grunewald S, et al. Antifungal efficacy of lasers against dermatophytes and yeasts in vitro. Int J Hyperthermia 2013; 29: 544–50.

    Article  PubMed  Google Scholar 

  23. Hashimoto T, Blumenthal HJ. Survival and resistance of Trichophyton mentagrophytes arthrospores. Appl Environ Microbiol 1978; 35: 274–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Essien JP, Jonah I, Umoh AA, Eduok SI, Akpan EJ, Umoiyoho A. Heat resistance of dermatophyte’s conidiospores from athletes kits stored in Nigerian University Sport’s Center. Acta Microbiol Immunol Hung 2009; 56: 71–9.

    Article  CAS  PubMed  Google Scholar 

  25. Amichai B, Grunwald MH, Davidovici B, Farhi R, Shemer A. The effect of domestic laundry processes on fungal contamination of socks. Int J Dermatol 2013; 52: 1392–4.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Society for advancement in science and research at the medical faculty of Ludwig Maximilian University for financially supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia K. Tietze.

Additional information

Conflicts of interest

None.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seidel, K., Tietze, L.F., Braun, C. et al. Evaluation of the heat sensitivity of Trichophyton rubrum and Trichophyton interdigitale. Eur J Dermatol 33, 19–24 (2023). https://doi.org/10.1684/ejd.2023.4406

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1684/ejd.2023.4406

Key words

Navigation