Skip to main content
Log in

The role of skin dysbiosis in atopic dermatitis

  • GERDA Review
  • Published:
European Journal of Dermatology

Abstract

The cutaneous microbiota contributes to skin barrier function, ensuring effective protection against pathogens and contributing to the maintenance of epidermal integrity. Dysbiosis is frequently present in atopic dermatitis (AD), a chronic inflammatory disease associated with skin barrier defects. Dysbiosis is associated with reduced bacterial diversity and marked Staphylococcus aureus colonization, which is favoured in the case of certain local AD-specific properties such as reduced skin acidity, eased bacterial adhesion and decreased antimicrobial peptide production. Furthermore, S. aureus-associated skin dysbiosis, via the production of staphylococcal virulence factors, may also participate in the immunopathology of AD by altering the epidermal barrier and inducing an inflammatory response. However, there are currently no arguments for recommending screening for, and treatment of S. aureus-associated dysbiosis outside the setting of cutaneous superinfection. Nonetheless, modulation of the skin microbiota may hold promise for AD management. Here, we describe the relationships that exist between the skin microbiota and AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Egert M, Simmering R. The microbiota of the human skin. In: Schwiertz A, editor. Microbiota of the human body: implications in health and disease. Switzerland: Springer International Publishing, 2016.

    Google Scholar 

  2. Ranjan R, Rani A, Metwally A, McGee HS, Perkins DL. Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys Res Commun 2016;469: 967–77.

    Article  CAS  PubMed  Google Scholar 

  3. Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol 2018; 16: 143–55.

    Article  CAS  PubMed  Google Scholar 

  4. Hachem J-P, Crumrine D, Fluhr J, et al. pH directly regulates epidermal permeability barrier homeostasis, and stratum corneum integrity/cohesion. J Invest Dermatol 2003; 121: 345–53.

    Article  CAS  PubMed  Google Scholar 

  5. Lambers H, Piessens S, Bloem A, Pronk H, Finkel P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int J Cosmet Sci 2006; 28: 359–70.

    Article  CAS  PubMed  Google Scholar 

  6. Proksch E. pH in nature, humans and skin. J Dermatol 2018;45: 1044–52.

    Article  CAS  PubMed  Google Scholar 

  7. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol 2011; 9: 24–253.

    Google Scholar 

  8. Cogen AL, Yamasaki K, Sanchez KM, et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from staphylococcus epidermidis, a normal resident of the skin. J Invest Dermatol 2010; 130: 192–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zipperer A, Konnerth MC, Claudia Laux MC, et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 2016; 535: 511–6.

    Article  CAS  PubMed  Google Scholar 

  10. Nakatsuji T, Chen TH, Narala S, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med 2017; 9: eaah4680.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Archer NK, Mazaitis MJ, Costerton JW, et al. Staphylococcus aureus biofilms. Virulence 2011; 2: 445–59.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gonzalez T, Biagini Myers JM, Herr AB, Khurana Hershey GK. Staphylococcal biofilms in atopic dermatitis. Curr Allergy Asthma Rep 2017; 17: 81.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Iwase T, Uehara Y, Shinji H, et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 2010; 465: 346–9.

    Article  CAS  PubMed  Google Scholar 

  14. Lai Y, Cogen AL, Radek KA, et al. Activation of TLR2 by a small molecule produced by staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J Invest Dermatol 2010; 130: 2211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lai Y, Nardo AD, Nakatsuji T, et al. Commensal bacteria regulate TLR3-dependent inflammation following skin injury. Nat Med 2009; 15: 1377–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Scharschmidt TC, Vasquez KS, Truong H-A, et al. A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. immunity 2015; 43: 1011–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Naik S, Bouladoux N, Wilhelm C, et al. Compartmentalized control of skin immunity by resident commensals. Science 2012; 337: 1115–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Linehan JL, Oliver JH, Han S-J, et al. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell 2018; 172: 784–796e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weidinger S, Beck LA, Bieber T, Kabashima K, Irvine AD. Atopic dermatitis. Nat Rev Dis Primer 2018; 4: 1.

    Article  Google Scholar 

  20. Byrd AL, Deming C, Cassidy SKB, et al. Staphylococcus aureus and S. epidermidis strain diversity underlying human atopic dermatitis. Sci Transl Med 2017; 9: eaal4651.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kong HH, Oh J, Deming C, Conlan S, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res 2021; 22: 850–9.

    Article  Google Scholar 

  22. Callewaert C, Nakatsuji T, Knight R, et al. IL-4R(blockade by dupilumab decreases staphylococcus aureus colonization and increases microbial diversity in atopic dermatitis. J Invest Dermatol 2020; 140: 191–202e7.

    Article  CAS  PubMed  Google Scholar 

  23. Higaki S, Morohashi M, Yamagishi T, Hasegawa Y. Comparative study of staphylococci from the skin of atopic dermatitis patients and from healthy subjects. Int J Dermatol 1999; 38: 265–9.

    Article  CAS  PubMed  Google Scholar 

  24. Guzik TJ, Bzowska M, Kasprowicz A, et al. Persistent skin colonization with Staphylococcus aureus in atopic dermatitis: relationship to clinical and immunological parameters. Clin Exp Allergy 2005; 35: 448–55.

    Article  CAS  PubMed  Google Scholar 

  25. Park H-Y, Kim CR, Huh IS, et al. Staphylococcus aureus colonization in acute and chronic skin lesions of patients with atopic dermatitis. Ann Dermatol 2013; 25: 410–6.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Totté JEE, der Feltz WT, Hennekam M, van Belkum A, van Zuuren EJ, Pasmans SGMA. Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: a systematic review and meta-analysis. Br J Dermatol 2016; 175: 687–95.

    Article  PubMed  Google Scholar 

  27. Simpson EL, Villarreal M, Jepson B, et al. Patients with atopic dermatitis colonized with staphylococcus aureus have a distinct phenotype and endotype. J Invest Dermatol 2018; 138: 2224–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tauber M, Balica S, Hsu C-Y, et al. Staphylococcus aureus density on lesional and nonlesional skin is strongly associated with disease severity in atopic dermatitis. J Allergy Clin Immunol 2016; 137: 1272–1274.e3.

    Article  PubMed  Google Scholar 

  29. Kezic S, O’Regan GM, Yau N, et al. Levels of filaggrin degradation products are influenced by both filaggrin genotype and atopic dermatitis severity. Allergy 2011; 66: 93440.

    Article  Google Scholar 

  30. Howell MD, Eui Kim B, Gao P, et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol 2009; 124: R7–12.

    Article  CAS  PubMed  Google Scholar 

  31. Cho SH, Strickland I, Boguniewicz M, Leung DY. Fibronectin and fibrinogen contribute to the enhanced binding of Staphylococcus aureus to atopic skin. J Allergy Clin Immunol 2001; 108: 269–74.

    Article  CAS  PubMed  Google Scholar 

  32. Foster TJ, Geoghegan JA, Ganesh VK, Höök M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 2014; 12: 49–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Clarke SR, Mohamed R, Bian L, et al. The Staphylococcus aureus surface protein IsdA mediates resistance to innate defenses of human skin. Cell Host Microbe 2007; 1: 199–212.

    Article  CAS  PubMed  Google Scholar 

  34. Riethmuller C, McAleer MA, Koppes SA, et al. Filaggrin breakdown products determine corneocyte conformation in patients with atopic dermatitis. J Allergy Clin Immunol 2015; 136: 1573–1580.e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim BE, Leung DYM. Significance of skin barrier dysfunction in atopic dermatitis. Allergy Asthma Immunol Res 2018; 10: 207–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sonesson A, Przybyszewska K, Eriksson S, et al. Identification of bacterial biofilm and the Staphylococcus aureus derived protease, staphopain, on the skin surface of patients with atopic dermatitis. Sci Rep 2017; 7: 8689.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kopfnagel V, Dreyer S, Zeitvogel J, et al. Free human DNA attenuates the activity of antimicrobial peptides in atopic dermatitis. Allergy 2021; 76: 3145–54.

    Article  CAS  PubMed  Google Scholar 

  38. Williams MR, Costa SK, Zaramela LS, et al. Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis. Sci Transl Med 2019; 11: eaat8329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nakatsuji T, Dreyer S, Zeitvogel J, et al. Staphylococcus aureus exploits epidermal barrier defects in atopic dermatitis to trigger cytokine expression. J Invest Dermatol 2016; 136: 2192–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nakagawa S, Matsumoto M, Katayama Y, et al. Staphylococcus aureus virulent PSMα peptides induce keratinocyte alarmin release to orchestrate il-17-dependent skin inflammation. Cell Host Microbe 2017; 22: 667–677e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hong S-W, Kim M-R, Lee E-Y, et al. Extracellular vesicles derived from Staphylococcus aureus induce atopic dermatitis-like skin inflammation. Allergy 2011; 66: 351–9.

    Article  CAS  PubMed  Google Scholar 

  42. Nakamura Y, Oscherwitz J, Cease KB, et al. Staphylococcus δ-toxin induces allergic skin disease by activating mast cells. Nature 2013; 503: 397–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Skov L, Olsen JV, Giorno R, et al. Application of Staphylococcal enterotoxin B on normal and atopic skin induces up-regulation of T cells by a superantigen-mediated mechanism. J Allergy Clin Immunol 2000; 105: 820–6.

    Article  CAS  PubMed  Google Scholar 

  44. de Wit J, Totté JEE, van Buchem FJM, Pasmans SGMA. The prevalence of antibody responses against Staphylococcus aureus antigens in patients with atopic dermatitis: a systematic review and meta-analysis. Br J Dermatol 2018;178: 1263–71.

    Article  CAS  PubMed  Google Scholar 

  45. Leung DY, Harbeck R, Bina P, et al. Presence of IgE antibodies to staphylococcal exotoxins on the skin of patients with atopic dermatitis. Evidence for a new group of allergens. J Clin Invest 1993;92: 1374–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Orfali RL, Sato MN, Santos VG, et al. Staphylococcal enterotoxin B induces specific IgG4 and IgE antibody serum levels in atopic dermatitis. Int J Dermatol 2015; 54: 898–904.

    Article  CAS  PubMed  Google Scholar 

  47. Reginald K, Westritschnig K, Linhart B, et al. Staphylococcus aureus fibronectin-binding protein specifically binds IgE from patients with atopic dermatitis and requires antigen presentation for cellular immune responses. J Allergy Clin Immunol 2011; 128: 82–91e8.

    Article  CAS  PubMed  Google Scholar 

  48. Stevens DL, Bisno AL, Chambers HF, et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis 2014; 59: e10–52.

    Article  PubMed  Google Scholar 

  49. Vestergaard C, Wollenberg A, Barbarot S, et al. European task force on atopic dermatitis position paper: treatment of parental atopic dermatitis during preconception, pregnancy and lactation period. J Eur Acad Dermatol Venereol 2019; 33: 1644–59.

    Article  CAS  PubMed  Google Scholar 

  50. Chopra R, Vakharia PP, Sacotte R, Silverberg JI. Efficacy of bleach baths in reducing severity of atopic dermatitis: a systematic review and meta-analysis. Ann Allergy Asthma Immunol 2017; 119: 435–40.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sawada Y, Tong Y, Barangi M. Dilute bleach baths used for treatment of atopic dermatitis are not antimicrobial in vitro. J Allergy Clin Immunol 2019; 143: 1946–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bath-Hextall FJ, Birnie AJ, Ravenscroft JC, Williams HC. Interventions to reduce Staphylococcus aureus in the management of atopic eczema: an updated Cochrane review. Br J Dermatol 2010; 163: 12–26.

    Article  CAS  PubMed  Google Scholar 

  53. Gonzalez ME, Schaffer JV, Orlow SJ, et al. Cutaneous microbiome effects of fluticasone proprionate cream and adjunctive bleach baths in childhood atopic dermatitis. J Am Acad Dermatol 2016; 75: 481–493.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kwon S, Young Choi J, Shin J-W, et al. Changes in lesional and non-lesional skin microbiome during treatment of atopic dermatitis. Acta Derm Venereol 2019; 99: 284–90.

    Article  CAS  PubMed  Google Scholar 

  55. Lossius AH, Olav Sundnes O, Ingham AC, et al. Shifts in the skin microbiota after UVB treatment in adult atopic dermatitis. Dermatol Basel Switz 2021; 238: 1–12.

    Google Scholar 

  56. Hepburn L, Hijnen DJ, Sellman BR, et al. The complex biology and contribution of Staphylococcus aureus in atopic dermatitis, current and future therapies. Br J Dermatol 2017; 177: 63–71.

    Article  CAS  PubMed  Google Scholar 

  57. Nakatsuji T, Gallo RL, Faiza Shafiq, et al. Use of autologous bacteriotherapy to treat staphylococcus aureus in patients with atopic dermatitis: a randomized double-blind clinical trial. JAMA Dermatol 2021; 157(8): 978–82.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gueniche A, Knaudt B, Schuck E, et al. Effects of nonpathogenic gram-negative bacterium Vitreoscilla filiformis lysate on atopic dermatitis: a prospective, randomized, double-blind, placebo-controlled clinical study. Br J Dermatol 2008; 159: 1357–63.

    Article  CAS  PubMed  Google Scholar 

  59. Totté J, Jill de Wit J, Luba Pardo J, et al. Targeted anti-staphylococcal therapy with endolysins in atopic dermatitis and the effect on steroid use, disease severity and the microbiome: study protocol for a randomized controlled trial (MAAS trial). Trials 2017; 18: 404.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Myles IA, Earland NJ, Anderson ED, et al. First-in-human topical microbiome transplantation with Roseomonas mucosa for atopic dermatitis. JCI Insight 2018; 3: e120608.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Nakatsuji T, Hata TR, Tong Y, et al. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial. Nat Med 2021; 27: 700–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille Braun.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braun, C., Patra, V., Lina, G. et al. The role of skin dysbiosis in atopic dermatitis. Eur J Dermatol 32, 439–444 (2022). https://doi.org/10.1684/ejd.2022.4289

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1684/ejd.2022.4289

Key words

Navigation