Skip to main content
Log in

Role of the long non-coding RNA, SPRR2C, based on an in vitro psoriatic keratinocyte cell model

  • Investigative Report
  • Published:
European Journal of Dermatology Aims and scope

Abstract

Background

Psoriasis is a chronic inflammatory disease of the skin with complex pathogenesis. Long non-coding RNAs (lncRNAs) play an important regulatory role in the occurrence and progression of many diseases, as well as psoriasis.

Objectives

This study aimed to investigate the role and mechanism of the lncRNA, SPRR2C, in M5-induced psoriatic keratinocytes.

Materials & Methods

SPRR2C expression and subcellular localization was detected using FISH and qRT-PCR. Ker-CT and HaCaT cells stimulated by M5 (IL-17A, tumour necrosis factor-α, IL-1α, IL-22, and oncostatin-M) were used to establish a psoriatic cell model. CCK-8 assay, CFSE proliferation assay, flow cytometry, western blotting and ELISA were used to examine the effects of SPRR2C in the keratinocyte model.

Results

SPRR2C was highly expressed in psoriatic samples and M5-induced psoriatic keratinocytes, and SPRR2C was mainly localised to the cytoplasm. In keratinocytes, SPRR2C regulated proliferation, cell cycle and apoptosis, and induced the expression of IL-1β, IL-6, IL-8, CXCL2 and CCL20. Moreover, SPRR2C cellular effects were shown to be mediated by the PI3K/AKT/mTOR signalling pathway, based on experiments with the AKT-specific inhibitor, MK-2206, which was also shown to suppress overexpression of SPRR2C.

Conclusion

Our results indicate that SPRR2C plays a regulatory role and is involved in the PI3K/AKT/mTOR signalling pathway in psoriatic keratinocytes, which may provide a potential diagnostic and therapeutic target for psoriasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kastelan M, Prpić-Massari L, Brajac I. Apoptosis in psoriasis. Acta Dermatovenerol Croat 2009; 17: 182–6.

    CAS  PubMed  Google Scholar 

  2. Song JK, Yin S-Y, Li W, et al. An update on the role of long non-coding RNAs in psoriasis. Chin Med J (Engl) 2020; 134: 379–89.

    Article  Google Scholar 

  3. Liu Y, Krueger J, Bowcock A. Psoriasis: genetic associations and immune system changes. Genes Immun 2007; 8: 1–12.

    Article  PubMed  CAS  Google Scholar 

  4. Wolf N, Quaranta M, Prescott NJ, et al. Psoriasis is associated with pleiotropic susceptibility loci identified in type II diabetes and Crohn disease. J Med Genet 2008; 45: 114–6.

    Article  CAS  PubMed  Google Scholar 

  5. Harden J, Krueger J, Bowcock A. The immunogenetics of psoriasis: a comprehensive review. J Autoimmun 2015; 64: 66–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liyanarachchi S, Li W, Yan P, et al. Genome-wide expression screening discloses long noncoding RNAs involved in thyroid carcinogenesis. J Clin Endocrinol Metab 2016; 101: 4005–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ahn R, Gupta R, Lai K, et al. Network analysis of psoriasis reveals biological pathways and roles for coding and long non-coding RNAs. BMC Genomics 2016; 17: 841.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Yi R, Yang L, Zeng S, et al. Different expression profile of mRNA and long noncoding RNA in autoimmune thyroid diseases patients. J Cell Biochem 2019; 120: 19442–56.

    Article  CAS  PubMed  Google Scholar 

  9. Cai B, Cai J, Yin Z, et al. Long non-coding RNA expression profiles in neutrophils revealed potential biomarker for prediction of renal involvement in SLE patients. Rheumatology (Oxford) 2021; 60: 1734–46.

    Article  CAS  Google Scholar 

  10. Ahmed Shehata W, Maraee A, El Monem Ellaithy MA, et al. Circulating long noncoding RNA growth arrest-specific transcript 5 as a diagnostic marker and indicator of degree of severity in plaque psoriasis. Int J Dermatol 2021; 60: 973–9.

    Article  CAS  PubMed  Google Scholar 

  11. Jia H, Zhang K, Wu W-J, et al. LncRNA MEG3 influences the proliferation and apoptosis of psoriasis epidermal cells by targeting miR-21/caspase-8. BMC Mol Cell Biol 2019; 20: 46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Qiao M, Li R, Zhao X, et al. Up-regulated lncRNA-MSX2P1 promotes the growth of IL-22-stimulated keratinocytes by inhibiting miR-6731-5p and activating S100A7. Exp Cell Res 2018; 363: 243–54.

    Article  CAS  PubMed  Google Scholar 

  13. Széll M, Danis J, Bata-Csörgő Z, Kemény L. PRINS, a primate-specific long non-coding RNA, plays a role in the keratinocyte stress response and psoriasis pathogenesis. Pflugers Arch 2016; 468: 935–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 1988; 106: 761–71.

    Article  CAS  PubMed  Google Scholar 

  15. Stahley SN, Saito M, Faundez V, Koval M, Mattheyses AL, Kowalczyk AP. Desmosome assembly and disassembly are membrane raft-dependent. PLoS One 2014; 9: e87809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ramirez RD, Herbert B-S, Vaughan MB, et al. Bypass of telomere-dependent replicative senescence (M1) upon overexpression of Cdk4 in normal human epithelial cells. Oncogene 2003; 22: 433–44.

    Article  CAS  PubMed  Google Scholar 

  17. Vaughan MB, Ramirez RD, Brown SA, et al. A reproducible laser-wounded skin equivalent model to study the effects of aging in vitro. Rejuvenation Res 2004; 7: 99–110.

    Article  CAS  PubMed  Google Scholar 

  18. Beckert B, Panico F, Pollman R, Eming R, Banning A, Tikkanen R. Immortalized human hTert/KER-CT keratinocytes a model system for research on desmosomal adhesion and pathogenesis of pemphigus vulgaris. Int J Mol Sci 2019; 20: 3113.

    Article  CAS  PubMed Central  Google Scholar 

  19. Hohl D, de Viragh PA, Amiguet-Barras F, Gibbs S, Backendorf C, Huber M. The small proline-rich proteins constitute a multigene family of differentially regulated cornified cell envelope precursor proteins. J Invest Dermatol 1995; 104: 902–9.

    Article  CAS  PubMed  Google Scholar 

  20. Gibbs S, Fijneman R, Wiegant J, van Kessel AG, van De Putte P, Backendorf C. Molecular characterization and evolution of the SPRR family of keratinocyte differentiation markers encoding small proline-rich proteins. Genomics 1993; 16: 630–7.

    Article  CAS  PubMed  Google Scholar 

  21. Carregaro F, Stefanini ACB, Henrique T, Tajara EH. Study of small proline-rich proteins (SPRRs) in health and disease: a review of the literature. Arch Dermatol Res 2013; 305: 857–66.

    Article  CAS  PubMed  Google Scholar 

  22. Tian S, Chen S, Feng Y, Li Y. The interactions of small proline-rich proteins with late cornified envelope proteins are involved in the pathogenesis of psoriasis. Clin Cosmet Investig Dermatol 2021; 14: 1355–65.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nomura I, Goleva E, Howell MD, et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol 2003; 171: 3262–9.

    Article  CAS  PubMed  Google Scholar 

  24. Sugiura H, Ebise H, Tazawa T, et al. Large-scale DNA microarray analysis of atopic skin lesions shows overexpression of an epidermal differentiation gene cluster in the alternative pathway and lack of protective gene expression in the cornified envelope. Br J Dermatol 2005; 152: 146–9.

    Article  CAS  PubMed  Google Scholar 

  25. Luo M, Huang P, Pan Y, et al. Weighted gene coexpression network and experimental analyses identify lncRNA SPRR2C as a regulator of the IL-22-stimulated HaCaT cell phenotype through the miR-330/STAT1/S100A7 axis. Cell Death Dis 2021; 12: 86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Furue M, Furue K, Tsuji G, Nakahara T. Interleukin-17A and keratinocytes in psoriasis. Int J Mol Sci 2020; 21: 1275.

    Article  CAS  PubMed Central  Google Scholar 

  27. Tao H, Cheng L, Yang R. Downregulation of miR-34a promotes proliferation and inhibits apoptosis of rat osteoarthritic cartilage cells by activating PI3K/Akt pathway. Clin Interv Aging 2020; 15: 373–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sabnam S, Pal A. Relevance of Erk1/2-PI3K/Akt signaling pathway in CEES-induced oxidative stress regulates inflammation and apoptosis in keratinocytes. Cell Biol Toxicol 2019; 35: 541–64.

    Article  CAS  PubMed  Google Scholar 

  29. Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet 2006; 15: R17–29.

    Article  CAS  PubMed  Google Scholar 

  30. Gupta R, Ahn R, Lai K, et al. Landscape of long noncoding RNAs in psoriatic and healthy skin. J Invest Dermatol 2016; 136: 603–9.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou Y, Li X, Duan Y, Luo Y, Tang S, Wang J. LncRNA MALAT-1 regulates the growth of interleukin-22-stimulated keratinocytes via the miR-330-5p/S100A7 axis. Autoimmunity 2021; 55: 32–42.

    Article  PubMed  CAS  Google Scholar 

  32. Liu T, Duan X, He J, Yang C. KCNQ1OT1 promotes the proliferation and migration of psoriatic keratinocytes by regulating miR-183-3p/GAB1. Allergol Immunopathol 2021; 49: 125–30.

    Article  Google Scholar 

  33. Wang D, Cheng S, Zou G, Ding X. Paeoniflorin inhibits proliferation and migration of psoriatic keratinocytes via the lncRNA NEAT1/miR-3194-5p/Galectin-7 axis. Anticancer drugs 2021; 33: e423–33.

    Article  CAS  Google Scholar 

  34. Bos JD, de Rie MA, Teunissen MBM, Piskin G. Psoriasis: dysregulation of innate immunity. Br J Dermatol 2005; 152: 1098–107.

    Article  CAS  PubMed  Google Scholar 

  35. Homey B, Meller S. Chemokines and other mediators as therapeutic targets in psoriasis vulgaris. Clin Dermatol 2008; 26: 539–45.

    Article  PubMed  Google Scholar 

  36. Griffiths C, Armstrong AW, Gudjonsson JE, Barker JNWN. Psoriasis. Lancet 2021; 397: 1301–15.

    Article  CAS  PubMed  Google Scholar 

  37. Wójcik P, Gęgotek A, Žarković N, Skrzydlewska E. Disease-dependent antiapoptotic effects of cannabidiol for keratinocytes observed upon UV irradiation. Int J Mol Sci 2021; 22: 9956.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Fruman DA, Chiu H, Hopkins BD, et al. The PI3K pathway in human disease. Cell 2017; 170: 605–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gao J, Guo J, Nong Y, et al. 18β-Glycyrrhetinic acid induces human HaCaT keratinocytes apoptosis through ROS-mediated PI3K-Akt signaling pathway and ameliorates IMQ-induced psoriasis-like skin lesions in mice. BMC Pharm Toxicol 2020; 21: 41.

    Article  CAS  Google Scholar 

  40. Chamcheu J, Adhami VM, Esnault S, et al. Dual inhibition of PI3K/Akt and mTOR by the dietary antioxidant, delphinidin, ameliorates psoriatic features in vitro and in an imiquimod-induced psoriasis-like disease in mice. Antioxid Redox Signal 2017; 26: 49–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Duan Q, Wang G, Wang M, et al. LncRNA RP6-65G23.1 accelerates proliferation and inhibits apoptosis via p-ERK1/2/p-AKT signaling pathway on keratinocytes. J Cell Biochem 2020; 121: 4580–9.

    Article  CAS  PubMed  Google Scholar 

  42. Mercurio L, Albanesi C, Madonna S. Recent updates on the involvement of PI3K/AKT/mTOR molecular cascade in the pathogenesis of hyperproliferative skin disorders. Front Med (Lausanne) 2021; 8: 665647.

    Article  Google Scholar 

Download references

Funding

Financial support: This work was supported by National Major Science and Technology Projects of China (Grant No. 2017YFA0104604) and the National Natural Science Foundation of China (Grant Nos. 81773323, 81972937, and 82003344).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Sun.

Additional information

Conflicts of interest

The authors declare no conflicts of interest.

Supplementary data

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Yang, Z., Zhu, M. et al. Role of the long non-coding RNA, SPRR2C, based on an in vitro psoriatic keratinocyte cell model. Eur J Dermatol 32, 171–180 (2022). https://doi.org/10.1684/ejd.2022.4247

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1684/ejd.2022.4247

Key words

Navigation