Skip to main content
Log in

EBT3 Gafchromic® film as a new substrate for in vitro evaluation of sun protection factor

  • Investigative Report
  • Published:
European Journal of Dermatology

Abstract

Background

There exist different methods for the determination of sun protection factor (SPF) values for sunscreens.

Objectives

We aimed to develop a new in vitro method using EBT3 Gafchromic® film as a substrate.

Materials & Methods

The colour of EBT3 Gafchromic® film changes when exposed to UV light. Films were covered by sunscreen preparations of different SPF values ranging from 0 to 50. Uncovered and covered films were exposed to different solar light energies and their colour change was compared. Absorbance spectra of films was measured at 633 nm using a UV-VIS spectrophotometer apparatus.

Results

The colour of the film darkens when ultraviolet energy increases, which means that absorbance increases with exposure time. However, when films are covered by sunscreens, the colour change is less visible and the absorbance significantly decreases with increasing SPF value.

Conclusion

There is a linear correlation between the absorbance of EBT3 Gafchromic® film and SPF value of sunscreens covering the film. Statistical analysis demonstrated that the SPF value of a sunscreen can be predicted using EBT3 Gafchromic® film as a substrate. This is the first report of an in vitro method based on colour change of a substrate which takes into consideration exposure time, and relates more closely to conditions of real-life. Based on these parameters, this is a reliable in vitro method for SPF testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson BE. The influence of radiation on the skin and the basis of protection. Int J Cosmet Sci 1983; 5: 131–9. doi: https://doi.org/10.1111/j.1467-2494.1983.tb00334.x.

    Article  CAS  Google Scholar 

  2. Mbanga L, Mulenga M, Mpiana PT, Bokolo K, Mumbwa M, Mvingu K. Determination of sun protection factor (SPF) of some body creams and lotions marketed in Kinshasa by ultraviolet spectrophotometry. Int J Adv Res Chem Sci 2014; 1(8): 7–13, www.arcjournals.org.

    Google Scholar 

  3. Gupta D. UV absorbing properties of some plant derived extracts. Rjces 2013; 1(2): 34–6.

    Google Scholar 

  4. Amaro-Ortiz A, Betty Yan JAD. Ultraviolet radiation, aging and the skin: prevention of damage by topical cAMP manipulation. Molecules 2015; 19(5): 6202–19. doi: https://doi.org/10.3390/molecules-19056202.Ultraviolet.

    Article  Google Scholar 

  5. Cenizo V, André V, Reymermier C, Sommer P, Damour O, Perrier E. LOXL as a target to increase the elastin content in adult skin: a dill extract induces the LOXL gene expression. Exp Dermatol 2006; 15: 574–81. doi: https://doi.org/10.1111/j.0906-6705.2006.00442.x.

    Article  Google Scholar 

  6. Matts PJ, Fink B. Chronic sun damage and the perception of age, health and attractiveness. Photochem Photobiol Sci 2010; 9: 421–31. doi: https://doi.org/10.1039/b9pp00166b.

    Article  CAS  Google Scholar 

  7. Couteau C, Couteau O, Alami-El Boury S, Coiffard LJ. Sunscreen products: what do they protect us from? Int J Pharm 2011; 415: 181–4. doi: https://doi.org/10.1016/j.ijpharm.2011.05.071.

    Article  CAS  Google Scholar 

  8. Palm MD, O’Donoghue MN. Update on photoprotection. Dermatol Ther 2007; 20: 360–76. doi: https://doi.org/10.1016/S1578-2190(10)70696-X.

    Article  Google Scholar 

  9. European CommissionStandardisation mandate assigned to CEN concerning methods for testing efficacy of sunscreen products. European Commission, 2006.

  10. ISO Cosmetics — sun protection test methods — in vivo determination of the sun protection factor (SPF). ISO24444, 2010.

  11. Farah N, Francis Z, Abboud M. Analysis of the EBT3 Gafchromic film irradiated with 6MV photons and 6MeV electrons using reflective mode scanners. Phys Medica 2014; 30(6): 708–12. doi: https://doi.org/10.1016/j.ejmp.2014.04.010.

    Article  Google Scholar 

  12. Welch D, Randers-Pehrson G, Spotnitz HM, Brenner DJ. Unlami-nated Gafchromic EBT3 film for ultraviolet radiation monitoring. Radiat Prot Dosimetry 2017; 176(4): 341–6. doi: https://doi.org/10.1093/rpd/ncx016.

    Article  CAS  Google Scholar 

  13. Tajuddin MA, Omar AF. Measuring solar ultraviolet exposure dose on EBT3 film through the application of visible absorbance spectroscopy. 9th International Conference on Robotic, Vision, Signal Processing and Power Applications 2017; 2017; 398: 639–46. doi: https://doi.org/10.1007/978-981-10-1721-6.

    Google Scholar 

  14. Bahreyni Toossi M, Khorshidi F, Ghorbani M, Mohamadian NDD. Comparison of EBT and EBT3 radiochromic film usage in parotid cancer radiotherapy. J Biomed Phys Eng 2016; 6(1): 1–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nakano M, Hill RF, Whitaker M, Kim J. A study of surface dosimetry for breast cancer radiotherapy treatments using Gafchromic EBT2 film. J Appl Clin Med Phys 2012; 13(3): 83–97.

    Article  Google Scholar 

  16. Cheung T, Butson MJ, Yu PKN. Multilayer Gafchromic film detectors for breast skin dose determination in vivo. Phys Med Biol 2002; 31(47): 31–7.

    Article  Google Scholar 

  17. Aydarous A, Al-Omary EA, El Ghazaly M. Characterization of Gafchromic EBT3 films for ultraviolet radiation dosimetry. Radiat Eff Defects Solids 2014; 169(3): 249–55. doi: https://doi.org/10.1080/10420150.2013.848446.

    Article  CAS  Google Scholar 

  18. Butson MJ, Cheung T, Yu PKN, Abbati D, Greenoak G. Ultraviolet radiation dosimetry with radiochromic film. Phys Med Biol 2000; 45: 1863–8.

    Article  Google Scholar 

  19. Butson ET, Yu PKN, Butson MJ. Solar ultraviolet radiation response of EBT2 Gafchromic, radiochromic film. Phys Med Biol 2013; 58: 287–94. doi: https://doi.org/10.1088/0031-9155/58/21/N287.

    Article  Google Scholar 

  20. Tsang PY, Chan PM, Yu KN. Measuring diffuse ultraviolet exposures using Gafchromic EBT3 films. Results Phys 2017; 7: 1492–3. doi: https://doi.org/10.1016/j.rinp.2017.04.016.

    Article  Google Scholar 

  21. Herzog B, Osterwalder U. In silico determination of topical sun protection. Cosmet Sci Technol 2011: 62–70, http://cosmetic-sciencetechnology.com/articles/samples/2471.pdf%5Cnhttp://www.skin-care-forum.basf.com/en/articles/home/a-review-of-cosmetics-regulations-in-asia/2012/11/87a437df-d785-4304-8a6c-018fb2b2298b/in-silico-determination-of-topical-sun-protection.

  22. Mansur JS. Determinacao do fator de protecao solar por espectrofotometria. An Bras Dermatol 1986; 61(3): 121–4.

    Google Scholar 

  23. Sayre RM, Agin PP, LeVee GJ, Marlowe E. A comparison of in vivo and in vitro testing of sunscreening formulas. Photochem Photobiol 1979; 29: 559–66. doi: https://doi.org/10.1111/j.1751-1097.1979.tb07090.x.

    Article  CAS  Google Scholar 

  24. Quatela A, Miloudi L, Tfayli A, Baillet-Guffroy A. In vivo Raman microspectroscopy: intra- and intersubject variability of stratum corneum spectral markers. Skin Pharmacol Physiol 2016; 29(2): 102–9. doi: https://doi.org/10.1159/000445079.

    Article  CAS  Google Scholar 

  25. De Bleye C, Dumont E, Rozet E, et al. Determination of 4-aminophenol in a pharmaceutical formulation using surface enhanced Raman scattering: from development to method validation. Talanta 2013; 116: 899–905. doi: https://doi.org/10.1016/j.talanta.2013.07.084.

    Article  CAS  Google Scholar 

  26. Miloudi L, Bonnier F, Barreau K, et al. ATR-IR coupled to partial least squares regression (PLSR) for monitoring an encapsulated active molecule in complex semi-solid formulations. Analyst 2018; 143(10): 2377–89. doi: https://doi.org/10.1039/c8an00547h.

    Article  CAS  Google Scholar 

  27. Miloudi L, Bonnier F, Bertrand D, et al. Quantitative analysis of curcumin-loaded alginate nanocarriers in hydrogels using Raman and attenuated total reflection infrared spectroscopy. Anal Bioanal Chem 2017; 409(19): 4593–605. doi: https://doi.org/10.1007/s00216-017-0402-y.

    Article  CAS  Google Scholar 

  28. Coddington O, Lean JL, Pilewskie P, Snow M, Lindholm D. A solar irradiance climate data record. Am Meteorol Soc 2016; 97(7): 1265–82. doi: https://doi.org/10.1175/BAMS-D-14-00265.1.

    Article  Google Scholar 

  29. Newport®. Introduction to solar radiation.https://www.newport.com/t/introduction-to-solar-radiation (accessed February 1, 2019).

  30. European Commission European Commission recommendation on the efficacy of sunscreen products and the claims made relating thereto. European Commission, 2006.

  31. FDA. Sunscreen: how to help protect your skin from the sun.https://www.fda.gov/Drugs/ResourcesForYou/Consumers/Buying-UsingMedicineSafely/UnderstandingOver-the-CounterMedicines/ucm239463.htm (accessed January 2, 2019).

Download references

Acknowledgments and disclosures

Acknowledgments: We would like to thank Obegi Chemicals, the Research Council of Saint-Joseph University of Beirut (Projects FS99 & FS123) and CEDRE program for the financial support. Conflicts of interest: none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rindala El Khoury.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Khoury, R., Abboud, M., Michael-Jubeli, R. et al. EBT3 Gafchromic® film as a new substrate for in vitro evaluation of sun protection factor. Eur J Dermatol 31, 335–341 (2021). https://doi.org/10.1684/ejd.2021.4049

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1684/ejd.2021.4049

Key words

Navigation